The accident at the Fukushima Dai-ichi Nuclear Power Plant (NPP) resulting from the 2011 Great East Japan Earthquake raised awareness as to the importance of considering Beyond Design Basis Events (BDBE) when planning for safe management of NPPs. In considering BDBE, it is necessary to clarify the possible failure modes of structures under extreme loading. Because piping systems are one of the representative components of NPPs, an experimental investigation was conducted on the failure of a pipe assembly under simulated excessive seismic loads. The failure mode obtained by excitation tests was mainly fatigue failure. The reduction of the dominant frequency and the increase of hysteresis damping were clearly observed in high-level input acceleration due to plastic deformation, and they greatly affected the specimens’ vibration response. Based on the experimental results, a procedure is proposed for calculating experimental stress intensities based on excitation test so that they can be compared with design limitations.

References

References
1.
IAEA
,
2016
, “Safety of Nuclear Power Plants: Design,” Specific Safety Requirements, IAEA Safety Standards Series, International Atomic Energy Agency, Vienna, Austria, Standard No.
SSR-2/1 (Rev.1)
.http://www-pub.iaea.org/books/IAEABooks/8771/Safety-of-Nuclear-Power-Plants-Design
2.
Kasahara
,
N.
,
Nakamura
,
I.
,
Machida
,
H.
, and
Nakamura
,
H.
,
2014
, “Research Plan on Failure Modes by Extreme Loadings Under Design Extension Conditions,”
ASME
Paper No. PVP2014-28349.
3.
Fujita
,
K.
,
Shiraki
,
K.
,
Kitade
,
K.
, and
Nakamura
,
T.
,
1978
, “
Vibration Damaged Experiments of Curved Piping for Investigating the Seismic Ultimate Strength
,”
JSME
,
44
(
386
), pp.
3437
3445
(in Japanese).
4.
Fujiwaka
,
T.
,
Endou
,
R.
,
Furukawa
,
S.
,
Ono
,
S.
, and
Oketani
,
K.
,
1999
, “
Study on Strength of Piping Components Under Elastic-Plastic Behavior Due to Seismic Loading
,”
ASME PVP
,
387
, pp.
19
25
.
5.
Touboul
,
F.
,
Blay
,
N.
, and
Lacire
,
M. H.
,
1999
, “
Experimental, Analytical, and Regulatory Evaluation of Seismic Behavior of Piping Systems
,”
ASME J. Pressure Vessel Technol.
,
121
(
4
), pp.
388
392
.
6.
Tagart
,
S. W.
, Jr.
,
Tang
,
Y. K.
,
Guzy
,
D. J.
, and
Ranganath
,
S.
,
1990
, “
Piping Dynamic Reliability and Code Rule Change Recommendations
,”
Nucl. Eng. Des.
,
123
(
2–3
), pp.
373
385
.
7.
Varelis
,
G. E.
,
Karamanos
,
S. A.
, and
Gresnigt
,
A. M.
,
2012
, “
Pipe Elbows Under Strong Cyclic Loading
,”
ASME J. Pressure Vessel Technol.
,
135
(
1
), p.
011207
.
8.
Yoshino
,
K.
,
Endou
,
R.
,
Sakaida
,
T.
,
Yokota
,
H.
,
Fujiwaka
,
T.
,
Asada
,
Y.
, and
Suzuki
,
K.
,
2000
, “
Study on Seismic Design of Nuclear Power Plant Piping in Japan—Part 3: Component Test Results
,”
ASME PVP
,
407
, pp.
131
137
.
9.
Takahashi
,
K.
,
Watanabe
,
S.
,
Ando
,
K.
,
Hidaka
,
A.
,
Hisatsune
,
M.
, and
Miyazaki
,
K.
,
2009
, “
Low Cycle Fatigue Behaviors of Elbow Pipe With Local Wall Thinning
,”
Nucl. Eng. Des.
,
239
(
12
), pp.
2719
2727
.
10.
Nakamura
,
I.
,
Otani
,
A.
, and
Shiratori
,
M.
,
2004
, “Failure Behavior of Elbows With Local Wall Thinning Under Cyclic Load,”
ASME
Paper No. PVP2004-2950.
11.
Nakamura
,
I.
,
Otani
,
A.
, and
Shiratori
,
M.
,
2010
, “
Comparison of Failure Modes of Piping Systems With Wall Thinning Subjected to In-Plane, Out-of-Plane, and Mixed Mode Bending Under Seismic Load: An Experimental Approach
,”
ASME J. Pressure Vessel Technol.
,
132
(3), p.
031001
.
12.
Nakamura
,
I.
,
Otani
,
A.
,
Sato
,
Y.
,
Takada
,
H.
, and
Takahashi
,
K.
,
2010
, “Tri-Axial Shake Table Test on the Thinned Wall Piping Model and Damage Detection Before Failure,”
ASME
Paper No. PVP2010-25839.
13.
Nakamura
,
I.
,
Otani
,
A.
,
Sato
,
Y.
,
Takada
,
H.
,
Takahashi
,
K.
, and
Shibutani
,
T.
,
2011
, “Investigation of the Seismic Safety Capacity of Aged Piping System—Shake Table Test on Piping Systems With Wall Thinning by E-Defense,”
ASME
Paper No. PVP2011-57560.
14.
JSME
,
2005
, “Codes for Nuclear Power Generation Facilities—Rules on Design and Construction for Nuclear Power Plants,” The Japan Society of Mechanical Engineers, Tokyo, Japan, Standard No. JSME S NC1-2005.
15.
JEA
,
2009
, “Technical Code for Seismic Design of Nuclear Power Plants,” Japan Electric Association, Tokyo, Japan, Standard No. JEAC4601-2008.
16.
JEA
,
1987
, “Technical Guidelines for Aseismic Design of Nuclear Power Plants,” Japan Electric Association, Tokyo, Japan, Standard No.
JEAG4601-1987
.https://www.nrc.gov/reading-rm/doc-collections/nuregs/contract/cr6241/
17.
Hasegawa
,
K.
,
Miyazaki
,
K.
, and
Nakamura
,
I.
,
2008
, “
Failure Mode and Failure Strength for Wall Thinning Straight Pipes and Elbows Subjected to Seismic Loading
,”
ASME J. Pressure Vessel Technol.
,
130
(
1
), p.
011404
.
18.
Hinnant
,
C.
, and
Paulin
,
T.
,
2008
, “Experimental Evaluation of the Markle Fatigue Methods and ASME Piping Stress Intensification Factors,”
ASME
Paper No. PVP2008-61871.
19.
Nakamura
,
I.
,
Otani
,
A.
, and
Shiratori
,
M.
,
2013
, “Damage Process Compared to the Design Standard of the Elbow Subjected to In-Plane Cyclic Bending Load,”
ASME
Paper No. PVP2013-97834.
20.
Kasahara
,
N.
,
Nakamura
,
I.
,
Machida
,
H.
,
Nakamura
,
H.
, and
Okamoto
,
K.
,
2015
, “Identification of Failure Modes Under Design Extension Conditions,”
ASME
Paper No. PVP2015-45381.
21.
Nakamura
,
I.
,
Demachi
,
K.
, and
Kasahara
,
N.
,
2015
, “An Experimental Investigation on Failure Modes of Piping Components Under Excessive Seismic Load,” Structural Mechanics in Reactor Technology (SMiRT23), Manchester, UK, Aug. 10–14, Paper No.
437
.https://repository.lib.ncsu.edu/bitstream/handle/1840.20/34021/SMiRT-23_Paper_437.pdf?sequence=1&isAllowed=y
22.
Nakamura
,
I.
, and
Kasahara
,
N.
,
2016
, “Trial Model Tests With Simulation Material to Obtain Failure Modes of Pipes Under Excessive Seismic Loads,”
ASME
Paper No. PVP2016-63422.
You do not currently have access to this content.