Axial pipeline defects are detectable from torsional guided wave reflections through 90 deg elbows. This paper demonstrates that detection of localized damage in carbon steel pipes with a so-called standard long and very long radius elbow is possible using a single permanently installed source–receiver pair. We use dispersion imaging to determine why this is not possible in a short radius elbow pipe. Although the remote damage is detected in a standard short radius bend pipe, there is not enough signal to detect localized damage. Since pipeline bends are normally of at least standard long radius, the acoustical behavior is similar to that previously determined in straight pipes. The reflective method can thus be applied fruitfully to monitor structural health beyond industrial pipeline bends.

References

References
1.
Cawley
,
P.
, and
Alleyne
,
D. N.
,
1996
, “
The Use of Lamb Waves for the Long Range Inspection of Large Structures
,”
Ultrasonics
,
34
(2–5), pp.
287
290
.
2.
Vogelaar
,
B.
,
Golombok
,
M.
, and
Campman
,
X.
,
2016
, “
Pipe Attrition Acoustic Locater (PAAL) From Multi-Mode Dispersion Analysis
,”
Ultrasonics
,
68
, pp.
80
88
.
3.
Vogelaar
,
B.
, and
Golombok
,
M.
,
2016
, “
Quantification and Localization of Internal Pipe Damage
,”
Mech. Syst. Signal Process.
,
78
, pp.
107
117
.
4.
Rose
,
J. L.
,
Zhang
,
L.
,
Avioli
,
M. J.
, and
Mudge
,
P. J.
,
2005
, “
A Natural Focusing Low Frequency Guided Wave Experiment for the Detection of Defects Beyond Elbows
,”
ASME J. Pressure Vessel Technol.
,
127
(
3
), pp.
310
316
.
5.
Felix
,
S.
, and
Pagneux
,
V.
,
2002
, “
Multimodal Analysis of Acoustic Propagation in Three-Dimensional Bends
,”
Wave Motion
,
36
(
2
), pp.
157
168
.
6.
Demma
,
A.
,
Cawley
,
P.
,
Lowe
,
M. J. S.
, and
Pavlakovic
,
B.
,
2005
, “
The Effects of Bends on the Propagation of Guided Waves in Pipes
,”
ASME J. Pressure Vessel Technol.
,
127
(
3
), pp.
328
335
.
7.
Sanderson
,
R. M.
,
Hutchins
,
D. A.
,
Billson
,
D. R.
, and
Mudge
,
P. J.
,
2013
, “
The Investigation of Guided Wave Propagation Around a Pipe Bend Using an Analytical Modeling Approach
,”
J. Acoust. Soc. Am.
,
133
(
3
), pp.
1404
1414
.
8.
Zhou
,
W. J.
, and
Ichchou
,
M. N.
,
2010
, “
Wave Propagation in Mechanical Waveguide With Curved Members Using Wave Finite Element Solution
,”
Comput. Methods Appl. Mech. Eng.
,
199
(33–36), pp.
2099
2109
.
9.
Hayashi
,
T.
,
Kawashima
,
K.
,
Sun
,
Z.
, and
Rose
,
J. L.
,
2005
, “
Guided Wave Propagation Mechanics Across a Pipe Elbow
,”
ASME J. Pressure Vessel Technol.
,
127
(
3
), pp.
322
327
.
10.
Rudd
,
K. E.
,
Leonard
,
K. R.
,
Bingham
,
J. P.
, and
Hinders
,
M. K.
,
2007
, “
Simulation of Guided Waves in Complex Piping Geometries Using the Elastodynamic Finite Integration Technique
,”
J. Acoust. Soc. Am.
,
121
(
3
), pp.
1449
1458
.
11.
Wang
,
Y.
,
Hao
,
H.
,
Zhu
,
X.
, and
Ou
,
J.
,
2012
, “
Spectral Element Modelling of Wave Propagation With Boundary and Structural Discontinuity Reflections
,”
Adv. Struct. Eng.
,
15
(
5
), pp.
855
870
.
12.
Luo
,
G.-S.
,
Tan
,
J.-P.
,
Wang
,
L.
, and
Xu
,
Y.
,
2015
, “
Defects Detection in Typical Positions of Bend Pipes Using Low-Frequency Ultrasonic Guided Wave
,”
J. Cent. South Univ.
,
22
(
10
), pp.
3860
3867
.
13.
Verma
,
B.
,
Mishra
,
T. K.
,
Balasubramaniam
,
K.
, and
Rajagopal
,
P.
,
2014
, “
Interaction of Low-Frequency Axisymmetric Ultrasonic Guided Waves With Bends in Pipes of Arbitrary Bend Angle and General Bend Radius
,”
Ultrasonics
,
54
(
3
), pp.
801
808
.
14.
Ni
,
J.
,
Zhou
,
S.
,
Zhang
,
P.
, and
Li
,
Y.
,
2016
, “
Effect of Pipe Bend Configuration on Guided Waves-Based Defects Detection: An Experimental Study
,”
ASME J. Pressure Vessel Technol.
,
138
(
4
), p.
021203
.
15.
Nishino
,
H.
,
Tanaka
,
T.
,
Katashima
,
S.
, and
Yoshida
,
K.
,
2011
, “
Experimental Investigation of Mode Conversions of the T(0, 1) Mode Guided Wave Propagating in an Elbow Pipe
,”
Jpn. J. Appl. Phys.
,
50
(
4
), p.
046601
.
16.
Nishino
,
H.
,
Masuda
,
S.
,
Mizobuchi
,
Y.
,
Asano
,
T.
, and
Yoshida
,
K.
,
2010
, “
Long-Range Testing of Welded Elbow Pipe Using the T(0, 1) Mode Ultrasonic Guided Wave
,”
Jpn. J. Appl. Phys.
,
49
(
11
), p.
116602
.
17.
Jones
,
R. E.
,
Simonetti
,
F.
,
Lowe
,
M. J. S.
, and
Bradley
,
I. P.
,
2012
, “
The Effect of Bends on the Long-Range Microwave Inspection of Thermally Insulated Pipelines for the Detection of Water
,”
J. Nondestr. Eval.
,
31
(
2
), pp.
117
127
.
18.
Abbasi
,
K.
,
Motlagh
,
N. H.
,
Neamatollahi
,
M. R.
, and
Hashizume
,
H.
,
2009
, “
Detection of Axial Crack in the Bend Region of a Pipe by High Frequency Electromagnetic Waves
,”
Int. J. Pressure Vessels Piping
,
86
(
11
), pp.
764
768
.
19.
Vogelaar
,
B.
, and
Golombok
,
M.
,
2016
, “
Dispersion and Attenuation by Transmission, Reflection, and Mode Conversion in Welded Pipes
,”
Appl. Acoust.
,
110
, pp.
1
8
.
20.
Demma
,
A.
,
Cawley
,
P.
,
Lowe
,
M.
, and
Roosenbrand
,
A.
,
2003
, “
The Reflection of the Fundamental Torsional Mode From Cracks and Notches in Pipes
,”
J. Acoust. Soc. Am.
,
114
(
2
), pp.
611
625
.
You do not currently have access to this content.