Predictions as to 105 h creep rupture strength of grade 91 steel have been made recently. The predicted values are examined with long-term creep rupture data of the steel. Three creep rupture databases were used in the predictions: data of tube products of grade 91 steel reported in National Institute for Materials Science (NIMS) Creep Data Sheet (NIMS T91 database), data of T91 steel collected in Japan, and data of grade 91 steel collected by an American Society of Mechanical Engineers (ASME) code committee. Short-term creep rupture data points were discarded by the following criteria for minimizing overestimation of the strength: selecting long-term data points with low activation energy (multiregion analysis), selecting data points crept at stresses lower than a half of proof stress (σ0.2/2 criterion), and selecting data points longer than 1000 h (cutoff time of 1000 h). In the case of NIMS T91 database, a time–temperature parameter (TTP) analysis of a dataset selected by multiregion analysis can properly describe the long-term data points and gives the creep rupture strength of 68 MPa at 600 °C. However, TTP analyses of datasets selected by σ0.2/2 criterion and cutoff time of 1000 h from the same database overestimate the data points and predict the strength over 80 MPa. Datasets selected by the same criterion from the three databases provide similar values of the strength. The different criteria for data selection have more substantial effects on predicted values of the strength of the steel than difference of the databases.

References

References
1.
EPRI
,
2014
, “
The Benefits of Improved Control of Composition of Creep-Strength-Enhanced Ferritic Steel Grade 91
,” Electric Power Research Institute, Palo Alto, CA, Report No.
3002003472
.https://www.epri.com/#/pages/product/000000003002003472/
2.
Kimura
,
K.
, and
Yaguchi
,
M.
,
2016
, “
Re-Evaluation of Long-Term Creep Strength of Base Metal of ASME Grade 91 Type Steel
,”
ASME
Paper No. PVP2016-63355.
3.
Swindeman
,
R.
, and
Foulds
,
J.
,
2017
, “
Analysis of the Grade 91 Stress Rupture Database
,”
Working Group—Creep Strength Enhanced Ferritic Steels, ASME Boiler and Pressure Vessel Code Week
, Atlanta, GA, Feb. 12–17.
4.
Bendick
,
W.
,
Cipolla
,
L.
,
Gabrel
,
J.
, and
Hald
,
J.
,
2009
, “
New ECCC Assessment of Creep Rupture Strength for Steel Grade X10CrMoVNb9-1 (Grade 91)
,”
Creep and Fracture in High Temperature Components
,
I. A.
Shibli
, and
S. R.
Holdsworth
, eds.,
DEStech Publications
,
Lancaster, PA
, pp.
56
67
.
5.
Ortolani
,
M.
, and
Yamamoto
,
T.
,
2016
, “
Allowable Stresses Re-Assessment for Grade 91 in Time-Dependent Time Range
,”
Eighth International Conference on Advances in Materials Technology for Fossil Power Plants
, Pine Cliffs Algarve, Portugal, Oct. 14–16.
6.
Kimura
,
K.
, and
Takahashi
,
Y.
,
2012
, “
Evaluation of Long-Term Creep Strength of ASME Grade 91, 92, and 122 Type Steels
,”
ASME
Paper No. PVP2012-78323.
7.
Maruyama
,
K.
, and
Yoshimi
,
K.
,
2007
, “
Influence of Data Analysis Method and Allowable Stress Criterion on Allowable Stress of Gr.122 Heat Resistant Steel
,”
ASME J. Pressure Vessel Technol.
,
129
(
3
), pp.
449
453
.
8.
Maruyama
,
K.
,
Nakamura
,
J.
, and
Yoshimi
,
K.
,
2015
, “
Prediction of Long-Term Creep Rupture Life of Grade 122 Steel by Multiregion Analysis
,”
ASME J. Pressure Vessel Technol.
,
137
(
2
), p.
021403
.
9.
Maruyama
,
K.
,
Nakamura
,
J.
, and
Yoshimi
,
K.
,
2016
, “
Assessment of Long-Term Creep Rupture Strength of T91 Steel by Multiregion Rupture Data Analysis
,”
ASME J. Pressure Vessel Technol.
,
138
(
3
), p.
031407
.
10.
Maruyama
,
K.
,
Baba
,
E.
,
Yokokawa
,
K.
,
Kushima
,
H.
, and
Yagi
,
K.
,
1994
, “
Errors of Creep Rupture Life Extrapolated by Time-Temperature Parameter Methods
,”
Tetsu-to-Hagane
,
80
(
4
), pp.
336
341
.
11.
Nagae
,
Y.
,
Onizawa
,
T.
,
Takaya
,
S.
, and
Yamashita
,
Y.
,
2014
, “
Material Strength Evaluation for 60 Years Design in Japanese Sodium Fast Reactor
,”
ASME
Paper No. PVP2014-28689.
12.
Kimura
,
K.
,
2016
, “
Evaluation and Extension of Allowable Stress Values for Gr.91
,”
Working Group—Allowable Stress Criterion, ASME Boiler and Pressure Vessel Code Week
, Washington, DC, Aug. 21–26.
13.
NIMS
,
2014
, “
Data Sheets of the Elevated-Temperature Properties of 9Cr-1Mo-V-Nb Steel Tubes for Boilers and Heat Exchangers, 9Cr-1Mo-V-Nb Steel Plates for Boilers and Pressure Vessels and 9Cr-1Mo-V-Nb Seamless Pipe for High Temperature Service
,” National Institute for Materials Science, Tsukuba, Japan, NIMS Creep Data Sheet No.
43A
.http://smds.nims.go.jp/creep/index_en.html
14.
Frost
,
H. J.
, and
Ashby
,
M. F.
,
1982
,
Deformation Mechanism Maps
,
Pergamon Press
,
Oxford, UK
.
15.
Ashby
,
M. F.
,
Gandhi
,
C.
, and
Taplin
,
D. M. R.
,
1979
, “
Fracture-Mechanism Maps and Their Construction for F.C.C. Metals and Alloys
,”
Acta Metall.
,
27
(
5
), pp.
699
729
.
16.
Maruyama
,
K.
,
2008
, “
Fracture Mechanism Map and Fundamental Aspects of Creep Fracture
,”
Creep-Resistant Steels
,
F.
Abe
,
T.
Kern
, and
R.
Viswanathan
, eds.,
Woodhead Publishing
,
Cambridge, UK
, pp.
350
364
.
17.
Viswanathan
,
R.
,
1989
, “
Creep
,”
Damage Mechanisms and Life Assessment of High Temperature Components
,
ASM International
,
Metals Park, OH
, pp.
59
110
.
18.
Maruyama
,
K.
,
Nakamura
,
J.
,
Sekido
,
N.
, and
Yoshimi
,
K.
,
2017
, “
Causes of Heat-to-Heat Variation of Creep Strength in Grade 91 Steel
,”
Mater. Sci. Eng., A
,
696
, pp.
104
112
.
19.
Oikawa
,
H.
, and
Iijima
,
Y.
,
2008
, “
Diffusion Behavior of Creep-Resistant Steels
,”
Creep-Resistant Steels
,
F.
Abe
,
T.
Kern
, and
R.
Viswanathan
, eds.,
Woodhead Publishing
,
Cambridge, UK
, pp.
241
264
.
20.
Kimura
,
K.
,
Sawada
,
K.
,
Kubo
,
K.
, and
Kushima
,
H.
,
2004
, “
Influence of Stress on Degradation and Life Prediction on High Strength Ferritic Steels
,”
ASME
Paper No. PVP2004-2566.
21.
ASM
,
2008
, “
Mechanical Behavior
,”
Elements of Metallurgy and Engineering Alloys
,
F. C.
Campbell
, ed.,
ASM International
,
Materials Park, OH
, pp.
201
220
.
22.
Yaguchi
,
M.
,
Nakamura
,
K.
, and
Nakahashi
,
S.
,
2016
, “
Re-Evaluation of Long-Term Creep Strength of Welded Joint of ASME Grade 91 Type Steel
,”
ASME
Paper No. PVP2016-63316.
23.
Kimura
,
K.
,
2016
, “
Creep Strength Analysis of Gr.91
,”
Working Group—Allowable Stress Criterion, ASME Boiler and Pressure Vessel Code Week
, St. Louis, MO, Nov. 6–11.
You do not currently have access to this content.