In order to ensure safe operation and structural integrity of pipelines and piping systems subjected to extreme loading conditions, it is often necessary to strengthen critical pipe components. One method to strengthen pipe components is the use of composite materials. The present study is aimed at investigating the mechanical response of pipe elbows, wrapped with carbon fiber-reinforced plastic (CFRP) material, and subjected to severe cyclic loading that leads to low-cycle fatigue (LCF). In the first part of the paper, a set of LCF experiments on reinforced and nonreinforced pipe bend specimens are described focusing on the effects of CFRP reinforcement on the number of cycles to failure. The experimental work is supported by finite element analysis presented in the second part of the paper, in an attempt to elucidate the failure mechanism. For describing the material nonlinearities of the steel pipe, an efficient cyclic-plasticity material model is employed, capable of describing both the initial yield plateau of the stress–strain curve and the Bauschinger effect characterizing reverse plastic loading conditions. The results from the numerical models are compared with the experimental data, showing an overall good comparison. Furthermore, a parametric numerical analysis is conducted to examine the effect of internal pressure on the structural behavior of nonreinforced and reinforced elbows, subjected to severe cyclic loading.

References

References
1.
Sobel
,
L. H.
, and
Newman
,
S. Z.
,
1980
, “
Comparison of Experimental and Simplified Analytical Results for the In-Plane Bending and Buckling of an Elbow
,”
ASME J. Pressure Vessel Technol.
,
102
(
4
), pp.
400
409
.
2.
Peters
,
F. E.
,
1978
, “
Results From a Buckling Test of a 16-Inch (406 mm) Diameter Piping Elbow
,” Westinghouse Advanced Reactors Division, Madison, PA, Report No. WARD-HT-3045-35.
3.
Gresnigt
,
A. M.
, and
Van Foeken
,
R.
,
1995
, “
Strength and Deformation Capacity of Bends in Pipelines
,”
Int. J. Offshore Polar Eng.
,
5
, pp.
294
307
.https://www.onepetro.org/journal-paper/ISOPE-95-05-4-294
4.
Chattopadhyay
,
J.
,
Nathani
,
D. K.
,
Dutta
,
B. K.
, and
Kushwaha
,
H. S.
,
2000
, “
Closed-Form Collapse Moment Equations of Elbows Under Combined Internal Pressure and In-Plane Bending Moment
,”
ASME J. Pressure Vessel Technol.
,
122
(
4
), pp.
431
436
.
5.
Yahiaoui
,
K.
,
Moffat
,
D. G.
, and
Moreton
,
D. N.
,
1996
, “
Response and Cyclic Strain Accumulation of Pressurized Piping Elbows Under Dynamic In-Plane Bending
,”
J. Strain Anal. Eng. Des.
,
31
(
2
), pp.
135
151
.
6.
Fujiwaka
,
T.
,
Endou
,
R.
,
Furukawa
,
S.
,
Ono
,
S.
, and
Oketani
,
K.
,
1999
, “
Study on Strength of Piping Components Under Elastic-Plastic Behavior Due to Seismic Loading
,” ASME Pressure Vessels and Piping Conference, Boston, MA, Aug. 1–5.
7.
Karamanos
,
S. A.
,
Giakoumatos
,
E.
, and
Gresnigt
,
A. M.
,
2003
, “
Nonlinear Response and Failure of Steel Elbows Under In-Plane Bending and Pressure
,”
ASME J. Pressure Vessel Technol.
,
125
(
4
), pp.
393
402
.
8.
Karamanos
,
S. A.
,
Tsouvalas
,
D.
, and
Gresnigt
,
A. M.
,
2006
, “
Ultimate Bending Capacity and Buckling of Pressurized 90 deg Steel Elbows
,”
ASME J. Pressure Vessel Technol.
,
128
(
3
), pp.
135
151
.
9.
Pappa
,
P.
,
Tsouvalas
,
D.
,
Karamanos
,
S. A.
, and
Houliara
,
S.
,
2008
, “
Bending Behavior of Pressurized Induction Bends
,” ASME Offshore Mechanics and Arctic Engineering Conference, Lisbon, Portugal, June 15–20.
10.
Takahashi
,
K.
,
Tsunoi
,
S.
,
Hara
,
T.
,
Ueno
,
T.
,
Mikami
,
A.
,
Takada
,
H.
,
Ando
,
K.
, and
Shiratori
,
M.
,
2009
, “
Experimental Study of Low Cycle Fatigue of Pipe Elbows With Local Wall Thinning and Life Estimation Using Finite Element Analysis
,”
Int. J. Pressure Vessels Piping
,
87
(
5
), pp.
211
219
.
11.
Varelis
,
G. E.
,
Karamanos
,
S. A.
, and
Gresnigt
,
A. M.
,
2013
, “
Pipe Elbows Under Strong Cyclic Loading
,”
ASME J. Pressure Vessel Technol.
,
135
(
1
), p.
011207
.
12.
Varelis
,
G. E.
, and
Karamanos
,
S. A.
,
2015
, “
Low-Cycle Fatigue of Pressurized Steel Elbows Under In-Plane Bending
,”
ASME J. Pressure Vessel Technol.
,
137
(
1
), p.
011401
.
13.
Karamanos
,
S. A.
,
2016
, “
Mechanical Behavior of Steel Pipe Bends: An Overview
,”
ASME J. Pressure Vessel Technol.
,
138
(
4
), p.
041203
.
14.
Alexander
,
C. R.
,
2006
, “
Assesing the Use of Composite Materials in Repairing Mechanical Damage in Transmission Pipelines
,”
ASME
Paper No. IPC2006-10482.
15.
Alexander
,
C. R.
,
2009
, “
Recent Advances on the Evaluating Composite Repair Technology Used to Repair Transmission Pipelines
,”
Clarion Evaluation and Rehabilitation of Pipelines Conference
, Pittsburgh, PA, Oct. 21–22.
16.
Alexander
,
C.
, and
Bedoya
,
J.
,
2010
, “
Repair of Dents Subjected to Cyclic Pressure Service Using Composite Materials
,”
ASME
Paper No. IPC2010-31524.
17.
Alexander
,
C.
,
Kania
,
R.
,
Zhou
,
J.
,
Vyvial
,
B.
, and
Iver
,
A.
,
2016
, “
Reinforcing Large Diameter Elbows Using Composite Materials Subjected to Extreme Bending and Internal Pressure Loading
,”
ASME
Paper No. IPC2016-64311.
18.
Chan
,
P. H.
,
Tshai
,
K. Y.
,
Johnson
,
M.
, and
Li
,
S.
,
2014
, “
Finite Element Analysis of Combined Static Loadings on Offshore Pipe Riser Repaired With Fibre-Reinforced Composite Laminates
,”
J. Reinf. Plast. Compos.
,
33
(
6
), pp.
514
525
.
19.
Mokhtari
,
M.
, and
Alavi Nia
,
A.
,
2015
, “
The Influence of Using CFRP Wraps on Performance of Buried Steel Pipelines Under Permanent Ground Deformations
,”
J. Soil Dyn. Earthquake Eng.
,
73
, pp.
29
41
.
20.
Mokhtari
,
M.
, and
Alavi Nia
,
A.
,
2016
, “
The Application of CFRP to Strengthen Buried Steel Pipelines Against Subsurface Explosion
,”
J. Soil Dyn. Earthquake Eng.
,
87
, pp.
52
62
.
21.
Reich
,
A.
, and
Charest
,
J.
,
2016
, “
Carbon Fiber Reinforcement of a Water Storage Tank for Beyond Design Basic Loads
,”
ASME
Paper No. PVP2016-63062.
22.
Chatzopoulou
,
G.
,
Karamanos
,
S. A.
, and
Varelis
,
G. E.
,
2016
, “
Finite Element Analysis of UOE Manufacturing Process and Its Effect on Mechanical Behavior of Offshore Pipes
,”
Int. J. Solids Struct.
,
83
, pp.
13
27
.
You do not currently have access to this content.