This paper presents the analysis of repair of pipelines using nanofiller dispersed composites. Steel pipe with part wall loss as per ISO 24817 is repaired using glass/epoxy composites with and without nanoclay reinforcement and burst test is performed in order to assess the performance and effectiveness of nanocomposites-based repair system. A simple methodology is developed to find out the failure pressure of pipelines and is compared with the experimental and ISO 24817 repair code results. The thickness of the composite wrap is predicted analytically for 1–5% nanofiller dispersion in the epoxy for 30–80% of pipe wall loss and live pressure of pipe. The results are analyzed to find effectiveness of clay dispersion and effect of live pressure for 30–80% of pipe wall loss. It is observed that the dispersion of nanofiller improves the bursting resistance of composite wrapping over outer surface of pipe.

References

References
1.
Shamsuddoha
,
M.
,
Mainul Islam
,
M.
,
Aravinthan
,
T.
,
Manalo
,
A.
, and
Lau
,
K.-T.
,
2013
, “
Effectiveness of Using Fiber-Reinforced Polymer Composites for Underwater Steel Pipeline Repairs
,”
Compos. Struct.
,
100
, pp.
40
54
.
2.
Köpple
,
M. F.
,
Lauterbach
,
S.
, and
Wagner
,
W.
,
2013
, “
Composite Repair of Through-Wall Defects in Pipework—Analytical and Numerical Models With Respect to ISO/TS 24817
,”
Compos. Struct.
,
95
, pp.
173
178
.
3.
Mohitpour
,
M.
,
Golshan
,
H.
, and
Murray
,
A.
,
2003
,
Pipeline Design and Construction: A Practical Approach
,
2nd ed.
,
American Society of Mechanical Engineers
,
New York
.
4.
Baker
,
A.
,
1999
, “
Bonded Composite Repair of Fatigue-Cracked Primary Aircraft Structure
,”
Compos. Struct.
,
47
(1–4), pp.
431
443
.
5.
Koch
,
G. H.
,
Brongers
,
M. P. H.
,
Thompson
,
N. G.
,
Virmani
,
Y. P.
, and
Payer
,
J. H.
,
2001
, “
Corrosion Cost and Preventive Strategies in the United States
,” CC Technologies Laboratories, NACE International, Dublin, OH, Publication No.
FHWA-RD-01-156
.
6.
ASME
,
2008
, “
ASME PCC-2 Repair of Pressure Equipment and Piping
,” American Society of Mechanical Engineers, New York.
7.
ISO
,
2006
, “
Petroleum, Petrochemical and Natural Gas Industries. Composite Repairs for Pipe Work—Qualification and Design, Installation, Testing and Inspection
,” International Organization for Standardization, Geneva, Switzerland, ISO Technical Specification No.
ISO/TS 24817:2006
.
8.
Goertzen
,
W. K.
, and
Kessler
,
M. R.
,
2007
, “
Dynamic Mechanical Analysis of Carbon/Epoxy Composites for Structural Pipeline Repair
,”
Composites, Part B
,
38
(
1
), pp.
1
9
.
9.
Ouinas
,
D.
,
Bachir Bouiadjra
,
B.
,
Achour
,
B.
, and
Benderdouche
,
N.
,
2009
, “
Modelling of a Cracked Aluminium Plate Repaired With Composite Octagonal Patch in Mode I and Mixed Mode
,”
Mater. Des.
,
30
(
3
), pp.
590
595
.
10.
Chan
,
P. H.
,
Tshai
,
K. Y.
,
Johnson
,
M.
, and
Li
,
S.
,
2015
, “
The Flexural Properties of Composite Repaired Pipeline: Numerical Simulation and Experimental Validation
,”
Compos. Struct.
,
133
, pp.
312
321
.
11.
Ouinas
,
D.
,
Sahnoune
,
M.
,
Benderdouche
,
N.
, and
Bouiadjra
,
B. B.
,
2009
, “
Stress Intensity Factor Analysis for Notched Cracked Structure Repaired by Composite Patching
,”
Mater. Des.
,
30
(
7
), pp.
2302
2308
.
12.
Balaganesan
,
G.
, and
Chandra Khan
,
V.
,
2016
, “
Energy Absorption of Repaired Composite Laminates Subjected to Impact Loading
,”
Composites, Part B
,
98
, pp.
39
48
.
13.
Duell
,
J. M.
,
Wilson
,
J. M.
, and
Kessler
,
M. R.
,
2008
, “
Analysis of a Carbon Composite Overwrap Pipeline Repair System
,”
Int. J. Pressure Vessels Piping
,
85
(
11
), pp.
782
788
.
14.
da Costa-Mattos
,
H. S.
,
Reis
,
J. M. L.
,
Sampaio
,
R. F.
, and
Perrut
,
V. A.
,
2009
, “
An Alternative Methodology to Repair Localized Corrosion Damage in Metallic Pipelines With Epoxy Resins
,”
Mater. Des.
,
30
(
9
), pp.
3581
3591
.
15.
Mally
,
T. S.
,
Johnston
,
A. L.
,
Chann
,
M.
,
Walker
,
R. H.
, and
Keller
,
M. W.
,
2013
, “
Performance of a Carbon-Fiber/Epoxy Composite for the Underwater Repair of Pressure Equipment
,”
Compos. Struct.
,
100
, pp.
542
547
.
16.
Alexander
,
C.
, and
Ochoa
,
O.
,
2010
, “
Extending Onshore Pipeline Repair to Offshore Steel Risers With Carbon-Fiber Reinforced Composites
,”
Compos. Struct.
,
92
(
2
), pp.
499
507
.
17.
da Costa Mattos
,
H. S.
,
Reis
,
J. M. L.
,
Paim
,
L. M.
,
da Silva
,
M. L.
,
Amorim
,
F. C.
, and
Perrut
,
V. A.
,
2014
, “
Analysis of a Glass Fiber Reinforced Polyurethane Composite Repair System for Corroded Pipelines at Elevated Temperatures
,”
Compos. Struct.
,
114
, pp.
117
123
.
18.
Mohan
,
T. P.
,
Ramesh Kumar
,
M.
, and
Velmurugan
,
R.
,
2006
, “
Mechanical and Barrier Properties of Epoxy Polymer Filled With Nanolayered Silicate Clay Particles
,”
J. Mater. Sci.
,
41
(
10
), pp.
2929
2937
.
19.
Balaganesan
,
G.
,
Velmurugan
,
R.
,
Srinivasan
,
M.
,
Gupta
,
N. K.
, and
Kanny
,
K.
,
2014
, “
Energy Absorption and Ballistic Limit of Nanocomposite Laminates Subjected to Impact Loading
,”
Int. J. Impact Eng.
,
74
, pp.
57
66
.
20.
Velmurugan
,
R.
, and
Balaganesan
,
G.
,
2012
, “
Energy Absorption Characteristics of Glass/Epoxy Nanocomposite Laminates by Impact Loading
,”
Int. J. Crashworthiness
,
18
(
1
), pp.
82
92
.
21.
Velmurugan
,
R.
, and
Balaganesan
,
G.
,
2011
, “
Modal Analysis of Pre and Post Impacted Nano Composite Laminates
,”
Lat. Am. J. Solids Struct.
,
8
(
1
), pp.
9
26
.
22.
da Costa Mattos
,
H. S.
,
Reis
,
J. M. L.
,
Paim
,
L. M.
,
da Silva
,
M. L.
,
Lopes
,
R.
, Jr.
, and
Perrut
,
V. A.
,
2016
, “
Failure Analysis of Corroded Pipelines Reinforced With Composite Repair Systems
,”
Eng. Failure Anal.
,
59
, pp.
223
236
.
23.
Saeed
,
N.
,
Ronagh
,
H.
, and
Virk
,
A.
,
2014
, “
Composite Repair of Pipelines, Considering the Effect of Live Pressure-Analytical and Numerical Models With Respect to ISO/TS 24817 and ASME PCC-2
,”
Composites, Part B
,
58
, pp.
605
610
.
24.
da Silva
,
M. L.
, and
da Costa Mattos
,
H. S.
,
2013
, “
Failure Pressure Estimations for Corroded Pipelines
,”
Mater. Sci. Forum
,
759
, pp.
65
76
.
25.
Stephens
,
D. R.
, and
Francini
,
R. B.
,
2000
, “
A Review and Evaluation of Remaining Strength Criteria for Corrosion Defects in Transmission Pipelines
,”
ETCE/OMAE Joint Conference
, Energy for the New Millennium, New Orleans, LA, Feb. 14–17, Paper No. ETCE2000/OGPT-10255.
26.
Duane
,
S. C.
, and
Roy
,
J. P.
,
2002
, “
Prediction of the Failure Pressure for Complex Corrosion Defects
,”
Int. J. Pressure Vessels Piping
,
79
(4), pp.
279
287
.
27.
Chiodo
,
M. S. G.
, and
Ruggieri
,
C.
,
2009
, “
Failure Assessments of Corroded Pipelines With Axial Defects Using Stress-Based Criteria: Numerical Studies and Verification Analyses
,”
Int. J. Pressure Vessels Piping
,
86
(2–3), pp.
164
176
.
28.
Zhu
,
X.
, and
Leis
,
B. N.
,
2012
, “
Evaluation of Burst Pressure Prediction Models for Line Pipes
,”
Int. J. Pressure Vessels Piping
,
89
, pp.
85
97
.
29.
Lasebikan
,
B. A.
, and
Akisanya
,
A. R.
,
2014
, “
Burst Pressure of Super Duplex Stainless Steel Pipes Subject to Combined Axial Tension, Internal Pressure and Elevated Temperature
,”
Int. J. Pressure Vessels Piping
,
119
, pp.
62
68
.
You do not currently have access to this content.