In this study, fatigue performances of the vehicle toroidal liquefied petroleum gas (LPG) fuel tanks were examined to estimate the fatigue life and its failure locations using both experimental and finite element analysis (FEA) methods. The experimental investigations performed as accelerated fatigue tests were carried out using a hydraulics test unit in which the tanks were internally pressurized by hydraulic oil. The LPG tanks were subjected to repeated cyclic pressure load varying from zero to service pressure (SP) of the tank. The computerized FEA modeling of these tanks were developed in three-dimensional (3D) form using nonuniform geometrical parameters and nonlinear material properties. These models were also subjected to zero-based high cycle fatigue pressure load considering the stress life approach. The FEA modeling process was also simulated in nonhomogeneous material conditions. Therefore, the fatigue life performance and failure location of the toroidal LPG fuel tanks were predicted using the computer-aided simulations and compared with the experimental results.

References

References
1.
Japan Office of Trade and Investment Ombudsman, 1999, “
Acceptance of Pressurized LP Gas Fuel Supply Apparatus for Automobiles
,” Resolution to Complaint to the Japan Economic Planning Agency, OTO No. 589.
2.
TSE
,
2004
, “
Automotive LPG Components-Containers
,” Turkish Standard Institute (TS), Ankara, Turkey, Standard No. TS 12095 EN 12805 (in Turkish).
3.
Tchoupou
,
K. M. T.
, and
Fotsing
,
B. D. S.
,
2015
, “
Fatigue Equivalent Stress State Approach Validation in Non-Conservative Criteria: A Comparative Study
,”
Lat. Am. J. Solids Struct.
,
12
(
13
), pp.
2506
2519
.
4.
Kisioglu
,
Y.
,
Brevick
,
J. R.
, and
Kinzel
,
G. L.
,
2001
, “
Determination of Burst Pressure and Locations of the DOT-39 Refrigerant Cylinders
,”
ASME J. Pressure Vessel Technol.
,
123
(
2
), pp.
240
247
.
5.
Kisioglu
,
Y.
,
2011
, “
Burst Pressure Determination of Vehicle Toroidal Oval Cross-Section LPG Fuel Tanks
,”
ASME J. Pressure Vessel Technol.
,
133
(
3
), p.
031202
.
6.
Kaptan
,
A.
, and
Kisioglu
,
Y.
,
2007
, “
Experimental of Burst Pressures and Failure Locations of Vehicle LPG Cylinders
,”
Int. J. Pressure Vessels Piping
,
84
(
7
), pp.
451
459
.
7.
Aksoley
,
M. E.
,
2004
, “
Examining the Burst Test Parameters Applied on LPG Tanks
,” M.Sc. thesis, Gebze High Technology Institute, Gebze, Turkey (in Turkish).
8.
Marzbanrad
,
J.
,
Paykani
,
A.
,
Afkar
,
A.
, and
Ghajar
,
M.
,
2013
, “
Finite Element Analysis of Composite High-Pressure Hydrogen Storage Vessels
,”
J. Mater. Environ. Sci.
,
4
(
1
), pp.
63
74
.
9.
Zu
,
L.
,
Zhang
,
D.
,
Xu
,
Y.
, and
Xiao
,
D.
,
2012
, “
Integral Design and Simulation of Composite Toroidal Hydrogen Storage Tanks
,”
Int. J. Hydrogen Energy
,
37
(
1
), pp.
1027
1036
.
10.
Kim
,
Y.-S.
,
Kim
,
L.-H.
, and
Park
,
J.-S.
,
2011
, “
The Effect of Composite Damage on Fatigue Life of the High Pressure Vessel for Natural Gas Vehicles
,”
Compos. Struct.
,
93
(
11
), pp.
2963
2968
.
11.
Kisioglu
,
Y.
,
Brevick
,
J. R.
, and
Kinzel
,
G. L.
,
2005
, “
Bottom End-Closure Design Optimization of DOT-39 Non-Refillable Refrigerant Cylinders
,”
ASME J. Pressure Vessel Technol.
,
127
(
2
), pp.
112
118
.
12.
Giglio
,
M.
,
2003
, “
Fatigue Analysis of Different Types of Pressure Vessel Nozzle
,”
Int. J. Pressure Vessels Piping
,
80
(
1
), pp.
1
8
.
13.
Rauscher
,
F.
,
2003
, “
Fatigue of Non-Welded Pressure Vessels Made of High Strength Steel
,”
Int. J. Pressure Vessels Piping
,
80
(
3
), pp.
197
204
.
14.
Alegre
,
J. M.
,
Bravo
,
P. M.
, and
Cuesta
,
I. I.
,
2010
, “
Fatigue Design of Wire-Wound Pressure Vessels Using ASME-API 579 Procedure
,”
Eng. Failure Anal.
,
17
(
4
), pp.
748
759
.
15.
Hossain
,
M. M.
, and
Seshadri
,
R.
,
2010
, “
Simplified Fitness-for-Service Assessment of Pressure Vessels and Piping Systems Containing Thermal Hot Spots and Corrosion Damage
,”
Int. J. Pressure Vessels Piping
,
87
(
7
), pp.
381
388
.
16.
Camara
,
S.
,
Bunsell
,
A. R.
, and
Thionnet
,
D. H.
,
2011
, “
Determination of Lifetime Probabilities of Carbon Fibre Composite Plates and Pressure Vessels for Hydrogen Storage
,”
Int. J. Hydrogen Energy
,
36
(
10
), pp.
6031
6038
.
17.
Chou
,
H. Y.
,
Bunsell
,
A. R.
, and
Thionnet
,
A.
,
2012
, “
Visual Indicator for the Detection of End-of-Life Criterion for Composite High Pressure Vessels for Hydrogen Storage
,”
Int. J. Hydrogen Energy
,
37
(
21
), pp.
16247
16255
.
18.
Song
,
L.
,
Xiaolong
,
J.
,
Hongjie
,
S.
,
Hongwei
,
S.
,
David
,
H.
, and
Xiaoping
,
Y.
,
2013
, “
Thermo-Mechanical Properties of Filament Wound CFRP Vessel Under Hydraulic and Atmospheric Fatigue Cycling
,”
Composites, Part B
,
46
, pp.
227
233
.
19.
Wanga
,
X. H.
, and
Redekop
,
D.
,
2011
, “
Natural Frequencies Analysis of Moderately-Thick and Thick Toroidal Shells
,”
Procedia Eng.
,
14
, pp.
636
640
.
20.
Zu
,
L.
,
Koussios
,
S.
, and
Beukers
,
A.
,
2010
, “
A Novel Design Solution for Improving the Performance of Composite Toroidal Hydrogen Storage Tanks
,”
Int. J. Hydrogen Energy
,
37
(19), pp.
14343
14350
.
21.
Zhan
,
H. J.
, and
Redekop
,
D.
,
2009
, “
Static and Dynamic Loading of an Ovaloid Toroidal Tank
,”
Thin-Walled Struct.
,
47
(
6–7
), pp.
760
767
.
22.
Augustins
,
L.
,
2013
, “
An Empirical Multiaxial High Cycle Fatigue Criterion for Automotive Cylinder Head Design
,”
Eng. Failure Anal.
,
28
, pp.
264
274
.
23.
Santanna
,
H. M.
, and
Leal
,
M. F.
,
2011
, “
Practical Procedure to Assess Critical Defects in Pressure Vessels Subjected to Fatigue Loads
,”
Eng. Fract. Mech.
,
78
(
8
), pp.
1669
1683
.
24.
Spear
,
A.
, and
Ingraffea
,
A.
,
2011
, “
Microstructurally Small Fatigue Crack Growth in Thin, Aluminum-Alloy, Pressure Vessel Liner
,”
Procedia Eng.
,
10
, pp.
686
691
.
25.
Rudolph
,
J.
,
Schmitt
,
C.
, and
Weib
,
E.
,
2002
, “
Fatigue Lifetime Assessment for Welded Vessel Components
,”
Int. J. Pressure Vessels Piping
,
79
(
2
), pp.
103
112
.
26.
Koh
,
S. K.
,
2002
, “
Fatigue Damage Evaluation of a High Pressure Tube Steel Using Cyclic Strain Energy Density
,”
Int. J. Pressure Vessels Piping
,
79
(
12
), pp.
791
798
.
27.
Varvani-Farahani
,
M. R.
, and
Kianoush
,
M.
,
2007
, “
Fatigue Failure Assessment of Engineering Components Under Service Loading Conditions
,”
Mater. Des.
,
28
(
2
), pp.
575
580
.
28.
Marczewska
,
T.
,
Bednarek
,
A.
,
Marczewski
,
W.
,
Sosnowski
,
H.
, and
Jakubczak
,
J.
,
2006
, “
Practical Fatigue Analysis of Hydraulic Cylinders and Some Design Recommendations
,”
Int. J. Fatigue
,
28
(
12
), pp.
1739
1751
.
29.
Erdemir Steel, 1997, “
Erdemir 6842 Steel Properties
,” Erdemir Product Catalogue, Erdemir Group, Zonguldak, Turkey.
30.
ANSYS,
2003
, “
ANSYS User Manual, Swanson Analysis System, V 8.0
,” ANSYS, Inc., Canonsburg, PA.
31.
Stephens
,
R. I.
,
Fatemi
,
A.
,
Stephens
,
R. R.
, and
Fuchs
,
H. O.
,
2000
,
Metal Fatigue in Engineering
, 2nd ed.,
Wiley
, New York.
You do not currently have access to this content.