In this paper, applicability of net-section collapse load approach to circumferential multiple-cracked pipe assessment is investigated using finite element (FE) damage analysis. The FE damage analysis based on the stress-modified fracture strain model is validated against limited fracture test data of two circumferential surface-cracked pipes. Then, the systematic parametric study is performed using the FE damage analysis for symmetrical and asymmetrical surface-cracked pipes. It is found that predictions using the net-section collapse load approach tend to be more accurate with increasing the distance between two symmetrical cracks. For asymmetrical cracks, it is found that the deeper crack plays a more important role and that the existing net-section collapse load expression can be potentially nonconservative. Idealization to symmetrical cracks based on the deeper crack is proposed.

References

References
1.
ASME
,
2011
, “
ASME B&PV Code Section XI: Rules for Inservice Inspection of Nuclear Power Plant Components
,” American Society of Mechanical Engineers, New York, Standard No. ASME BPVC-XI-2010.
2.
JSME
,
2008
, “
Rules on Fitness-for-Service for Nuclear Power Plants
,” Japan Society of Mechanical Engineers, Tokyo, Japan, Standard No. JSME S NA1-2008.
3.
Kanninen
,
M. F.
,
Broek
,
D.
,
Marschall
,
C. W.
,
Rybicki
,
E. F.
,
Sampath
,
S. G.
,
Simonen
,
F. A.
, and
Wilkowski
,
G. M.
,
1976
, “
Mechanical Fracture Predictions for Sensitized Stainless Steel Piping With Circumferential Cracks
,” Battelle, Columbus, OH, Report No.
EPRI NP-192
.
4.
Rahman
,
S.
, and
Wilkowski
,
G.
,
1998
, “
Net-Section-Collapse Analysis of Circumferentially Cracked Cylinders—Part I: Arbitrary-Shaped Cracks and Generalized Equations
,”
Eng. Fract. Mech.
,
61
(
2
), pp.
191
211
.
5.
Hasegawa
,
K.
,
Saito
,
K.
,
Iwamatsu
,
F.
, and
Miyazaki
,
K.
,
2007
, “
Prediction of Fully Plastic Failure Stresses for Pipes With Multiple Circumferential Flaws
,”
ASME
Paper No. PVP2007-26011.
6.
Li
,
Y.
,
Hasegawa
,
K.
,
Onizawa
,
K.
, and
Masayoshi
,
S.
,
2009
, “
Fracture Estimation Method for Pipe With Multiple Circumferential Surface Flaws
,”
ASME
Paper No. PVP2009-77061.
7.
Hasegawa
,
K.
,
Miyazaki
,
K.
,
Saito
,
K.
, and
Bezensek
,
B.
,
2009
, “
Evaluation of Alignment Rules Using Stainless Steel Pipes With Non-Aligned Flaws
,”
ASME
Paper No. PVP2009-77068.
8.
Oh
,
C. K.
,
Kim
,
Y. J.
,
Beak
,
J. H.
,
Kim
,
Y. P.
, and
Kim
,
W. S.
,
2007
, “
A Phenomenological Model of Ductile Fracture for API X65 Steel
,”
Int. J. Mech. Sci.
,
49
(
12
), pp.
1399
1412
.
9.
Oh
,
C. S.
,
Kim
,
N. H.
,
Kim
,
Y. J.
,
Baek
,
J. H.
,
Kim
,
Y. P.
, and
Kim
,
W. S.
,
2011
, “
A Finite Element Ductile Failure Simulation Method Using Stress-Modified Fracture Strain Model
,”
Eng. Fract. Mech.
,
78
(
1
), pp.
124
137
.
10.
Kim
,
N. H.
,
Oh
,
C. S.
, and
Kim
,
Y. J.
,
2011
, “
A Numerical Method to Simulate Ductile Failure of Tensile Plates With Interacting Through-Wall Cracks
,”
Fatigue Fract. Eng. Mater. Struct.
,
34
(
3
), pp.
215
226
.
11.
Kim
,
N. H.
,
Oh
,
C. S.
,
Kim
,
Y. J.
,
Yoon
,
K. B.
, and
Ma
,
Y. H.
,
2011
, “
Comparison of Fracture Strain Based Ductile Failure Simulation With Experimental Results
,”
Int. J. Pressure Vessels Piping
,
88
(
10
), pp.
434
447
.
12.
Rice
,
J. R.
, and
Tracey
,
D. M.
,
1969
, “
On the Ductile Enlargement of Voids in Triaxial Stress Fields
,”
J. Mech. Phys. Solids
,
17
(
3
), pp.
201
217
.
13.
McClintock
,
F. A.
,
1968
, “
A Criterion for Ductile Fracture by the Growth of Holes
,”
ASME J. Appl. Mech.
,
35
(
2
), pp.
363
371
.
14.
Hancock
,
J. W.
, and
Brown
,
D. K.
,
1983
, “
On the Role of Strain and Stress State in Ductile Failure
,”
J. Mech. Phys. Solids
,
31
(
1
), pp.
1
24
.
15.
Kim
,
J. H.
,
Kim
,
N. H.
,
Kim
,
Y. J.
,
Hasegawa
,
K.
, and
Miyazaki
,
K.
,
2013
, “
Ductile Fracture Simulation of 304 Stainless Steel Pipes With Two Circumferential Surface Cracks
,”
Fatigue Fract. Eng. Mater. Struct.
,
36
(
10
), pp.
1067
1080
.
16.
Dassault Systèmes,
2013
, “
ABAQUS Version 6.13 User's Manual
,” Dassault Systemes Simulia Corp., Providence, RI.
17.
Nam
,
H. S.
,
Oh
,
Y. R.
,
Kim
,
Y. J.
,
Kim
,
J. S.
, and
Miura
,
N.
,
2016
, “
Application of Engineering Ductile Tearing Simulation Method to CRIEPI Pipe Test
,”
Eng. Fract. Mech.
,
153
, pp.
128
142
.
18.
Ryu
,
H. W.
,
Bae
,
K. D.
,
Han
,
J. J.
,
Kim
,
Y. J.
,
Kim
,
J. S.
, and
Budden
,
P. J.
,
2016
, “
Ductile Tearing Simulation of Battelle Pipe Test Using Simplified Stress-Modified Fracture Strain Concept
,”
Fatigue Fract. Eng. Mater. Struct.
,
39
(
11
), pp.
1391
1406
.
19.
Bae
,
K. D.
,
Ryu
,
H. W.
,
Kim
,
Y. J.
, and
Kim
,
J. S.
,
2017
, “
Comparison of Ductile Tearing Simulation With Complex Cracked Pipe Test Data
,”
ASME J. Pressure Vessel Technol.
,
139
(
1
), p.
011203
.
You do not currently have access to this content.