Autofrettage is a metal working process of inducing compressive residual stresses in the vicinity of the inner surface of a thick-walled cylindrical or spherical pressure vessel for increasing its pressure capacity, fatigue life, and stress-corrosion resistance. The hydraulic autofrettage is a class of autofrettage processes, in which the vessel is pressurized using high hydraulic pressure to cause the partial plastic deformation followed by unloading. Despite its popularity, the requirement of high pressure makes this process costly. On the other hand, the thermal autofrettage is a simple method, in which the residual stresses are set up by first maintaining a temperature difference across the thickness of the vessel and then cooling it to uniform temperature. However, the increase in the pressure carrying capacity in thermal autofrettage process is lesser than that in the hydraulic autofrettage. In the present work, a combined hydraulic and thermal autofrettage process of a thick-walled cylinder is studied using finite element method package ABAQUS® for aluminum and SS304 steel. The strain-hardening and Bauschinger effects are considered and found to play significant roles. The results show that the combined autofrettage can achieve desired increase in the pressure capacity of thick-walled cylinders with relatively small autofrettage pressure. For example, in a SS304 cylinder of wall-thickness ratio of 3, an autofrettage pressure of 150 MPa enhances the pressure capacity by 41%, but the same pressure with a 36 °C higher inner surface temperature than outer surface temperature can enhance the pressure capacity by 60%.

References

References
1.
Perl
,
M. M.
,
Perry
,
J. J.
,
Aharon
,
T. T.
, and
Kolka
,
O. O.
,
2012
, “
Is There an “Ultimate” Autofrettage Process?
,”
ASME J. Pressure Vessel Technol.
,
134
(
4
), p.
041001
.
2.
Rees
,
D. W. A.
,
1987
, “
A Theory of Autofrettage With Applications to Creep and Fatigue
,”
Int. J. Pressure Vessels Piping
,
30
(
1
), pp.
57
76
.
3.
Rees
,
D. W. A.
,
1990
,“
Autofrettage Theory and Fatigue Life of Open-Ended Cylinders
,”
J. Strain Anal. Eng. Des.
,
25
(
2
), pp.
109
121
.
4.
Jones
,
R. H.
, and
Ricker
,
R. E.
,
1992
, “
Mechanisms of Stress-Corrosion Cracking
,”
Stress-Corrosion Cracking: Materials Performance and Evaluation
,
R. H.
Jones
, ed.,
ASM International
,
Materials Park, OH
, pp.
1
40
.
5.
MacGregor
,
C. W.
,
Coffin
,
J. L.
, and
Fisher
,
J. C.
,
1948
, “
Partially Plastic Thick-Walled Tubes
,”
J. Franklin Inst.
,
245
(
2
), pp.
135
158
.
6.
Stacey
,
A.
,
MacGillivary
,
H. J.
,
Webster
,
G. A.
,
Webster
,
P. J.
, and
Ziebeck
,
K. R. A.
,
1985
, “
Measurement of Residual Stresses by Neutron Diffraction
,”
J. Strain Anal. Eng. Des.
,
20
(
2
), pp.
93
100
.
7.
Stacey
,
A.
, and
Webster
,
G. A.
,
1988
, “
Determination of Residual Stress Distributions in Autofrettaged Tubing
,”
Int. J. Pressure Vessels Piping
,
31
(
3
), pp.
205
220
.
8.
Gao
,
X. L.
,
1992
, “
An Exact Elasto-Plastic Solution for an Open-Ended Thick-Walled Cylinder of a Strain-Hardening Material
,”
Int. J. Pressure Vessels Piping
,
52
(
1
), pp.
129
144
.
9.
Avitzur
,
B.
,
1994
, “
Autofrettage—Stress Distribution Under Load and Retained Stresses After Depressurization
,”
Int. J. Pressure Vessels Piping
,
57
(
3
), pp.
271
287
.
10.
Parker
,
A. P.
,
2001
, “
Autofrettage of Open-End Tubes—Pressures, Stresses, Strains, and Code Comparisons
,”
ASME J. Pressure Vessel Technol.
,
123
(
3
), pp.
271
281
.
11.
Davidson
,
T. E.
,
Barton
,
C. S.
,
Reiner
,
A. N.
, and
Kendall
,
D. P.
,
1962
, “
New Approach to the Autofrettage of High-Strength Cylinders
,”
Exp. Mech.
,
2
(
2
), pp.
33
40
.
12.
Chen
,
P. C.
,
1988
, “
A Simple Analysis of the Swage Autofrettage Process
,”
Transactions of the Fifth Army Conference on Applied Mathematics and Computing
, Research Triangle Park, NC, Report No.
ARCCB-TR-88030
.
13.
Iremonger
,
M. J.
, and
Kalsi
,
G. S.
,
2003
, “
A Numerical Study of Swage Autofrettage
,”
ASME J. Pressure Vessel Technol.
,
125
(
3
), pp.
347
351
.
14.
Chen
,
P. C.
,
1988
, “
Finite Element Analysis of the Swage Autofrettage Process
,” Army Armament Research Development and Engineering Center, Benet Laboratories, Watervliet, New York, Technical Report No.
ARCCB-TR-88037
.
15.
Till
,
E. T.
, and
Rammerstorfer
,
F. G.
,
1983
, “
Nonlinear Finite Element Analysis of an Autofrettage Process
,”
Comput. Struct.
,
17
(
5–6
), pp.
857
864
.
16.
Parker
,
A. P.
,
O'Hara
,
G. P.
, and
Underwood
,
J. H.
,
2003
, “
Hydraulic Versus Swage Autofrettage and Implications of the Bauschinger Effect
,”
ASME J. Pressure Vessel Technol.
,
125
(
3
), pp.
309
314
.
17.
Barbachano
,
H.
,
Alegre
,
J. M.
, and
Cuesta
,
I. I.
,
2012
, “
Numerical Simulation of the Swage Tube Forming (STF) in Cylinders
,”
Int. J. Mater. Eng. Technol.
,
7
(
2
), pp. 71–91.
18.
Mote
,
J. D.
,
Ching
,
L. K.
,
Knight
,
R. E.
,
Fay
,
R. J.
, and
Kaplan
,
M. A.
,
1971
, “
Explosive Autofrettage of Cannon Barrels
,” Army Materials and Research Center, Watertown, MA, Report No.
AMMRC CR 70-25
.
19.
Zhan
,
R. R.
,
Tao
,
C. D.
,
Han
,
L.
,
Huang
,
Y. M.
, and
Han
,
D. X.
,
2005
, “
The Residual Stress and Its Influence on the Fatigue Strength Induced by Explosive Autofrettage
,”
Explos. Shock Waves
,
25
(
3
), pp.
239
243
.
20.
Kamal
,
S. M.
, and
Dixit
,
U. S.
,
2015
, “
Feasibility Study of Thermal Autofrettage of Thick-Walled Cylinders
,”
ASME J. Pressure Vessel Technol.
,
137
(
6
), p.
061207
.
21.
Kamal
,
S. M.
,
Borsaikia
,
A. C.
, and
Dixit
,
U. S.
,
2016
, “
Experimental Assessment of Residual Stresses Induced by the Thermal Autofrettage of Thick-Walled Cylinders
,”
J. Strain Anal. Eng. Des.
,
51
(
2
), pp.
144
160
.
22.
Kamal
,
S. M.
, and
Dixit
,
U. S.
,
2016
, “
A Comparative Study of Thermal and Hydraulic Autofrettage
,”
J. Mech. Sci. Technol.
,
30
(
6
), pp.
2483
2496
.
23.
Kamal
,
S. M.
, and
Dixit
,
U. S.
,
2016
, “
A Study on Enhancing the Performance of Thermally Autofrettaged Cylinder Through Shrink-Fitting
,”
ASME J. Manuf. Sci. Eng.
,
138
(
9
), p.
094501
.
24.
Zare
,
H. R.
, and
Darijani
,
H.
,
2016
, “
A Novel Autofrettage Method for Strengthening and Design of Thick-Walled Cylinders
,”
Mater. Des.
,
105
, pp.
366
374
.
25.
Bland
,
D. R.
,
1956
, “
Elastoplastic Thick-Walled Tubes of Work-Hardening Material Subject to Internal and External Pressures and to Temperature Gradients
,”
J. Mech. Phys. Solids
,
4
(
4
), pp.
209
229
.
26.
Loghman
,
A.
, and
Wahab
,
M. A.
,
1994
, “
Loading and Unloading of Thick-Walled Cylindrical Pressure Vessels of Strain-Hardening Material
,”
ASME J. Pressure Vessel Technol.
,
116
(
2
), pp.
105
109
.
27.
Ziegler
,
H.
,
1959
, “
A Modification of Prager's Hardening Rule
,”
Q. Appl. Math.
,
17
(
1
), pp.
55
65
.
28.
Simulia, D. S., 2010, “
ABAQUS® 6.10 Analysis User's Manual
,” Dassault Systèmes Simulia Corp., Providence, RI.
29.
Kamal
,
S. M.
,
2016
, “
A Theoretical and Experimental Study of Thermal Autofrettage Process
,”
Ph.D. thesis
, IIT Guwahati, Guwahati, India.
You do not currently have access to this content.