A statistical predictive model to estimate the time dependence of metal loss (ML) for buried pipelines has been developed considering the physical and chemical properties of soil. The parameters for this model include pH, chloride content, caliphate content (SO), sulfide content, organic content (ORG), resistivity (RE), moisture content (WC), clay content (CC), plasticity index (PI), and particle size distribution. The power law-based time dependence of the ML was modeled as P = ktv, where t is the time exposure, k is the metal loss coefficient, and v is the corrosion growth pattern. The results were analyzed using statistical methods such as exploratory data analysis (EDA), single linear regression (SLR), principal component analysis (PCA), and multiple linear regression (MLR). The model revealed that chloride (CL), resistivity (RE), organic content (ORG), moisture content (WC), and pH were the most influential variables on k, while caliphate content (SO), plasticity index (PI), and clay content (CC) appear to be influential toward v. The predictive corrosion model based on data from a real site has yielded a reasonable prediction of metal mass loss, with an R2 score of 0.89. This research has introduced innovative ways to model the corrosion growth for an underground pipeline environment using measured metal loss from multiple pipeline installation sites. The model enables predictions of potential metal mass loss and hence the level of soil corrosivity for Malaysia.

References

References
1.
Velázquez
,
J. C.
,
Caleyo
,
F.
,
Valor
,
A.
, and
Hallen
,
J. M.
,
2009
, “
Predictive Model for Pitting Corrosion in Buried Oil and Gas Pipelines
,”
Corrosion
,
65
(
5
), pp.
332
342
.
2.
Noor
,
N. M.
,
Lim
,
K. S.
,
Yahaya
,
N.
, and
Abdullah
,
A.
,
2011
, “
Corrosion Study on X70-Carbon Steel Material Influenced by Soil Engineering Properties
,”
Adv. Mater. Res.
,
311–313
, pp.
875
880
.
3.
Yusof
,
S.
,
Noor
,
N. M.
,
Yahaya
,
N.
, and
Rashid
,
A. S. A.
,
2014
, “
Markov Chain Model for Predicting Pitting Corrosion Damage in Offshore Pipeline
,”
Asian J. Sci. Res.
,
7
(2), pp.
208
216
.
4.
Li
,
S. Y.
,
2003
, “
Corrosion Behaviour of Carbon Steel Influenced by Sulphate-Reducing Bacteria in Soil Environments
,” Ph.D. thesis, Seoul National University, Seoul, South Korea.
5.
Mughabghab
,
S. F.
, and
Sullivan
,
T. M.
,
1989
, “
Evaluation of the Pitting Corrosion of Carbon Steels and Other Ferrous Metals in Soil Systems
,”
Waste Manage.
,
9
(
4
), pp.
239
251
.
6.
Katano
,
Y.
,
Miyata
,
K.
,
Shimizu
,
H.
, and
Isogai
,
T.
,
2003
, “
Predictive Model for Pit Growth on Underground Pipes
,”
Corrosion
,
59
(
2
), pp.
155
161
.
7.
Melcher
,
R. E.
,
2010
, “
The Changing Character of Long Term Marine Corrosion of Mild Steel
,” The University of Newcastle, Australia,
Paper No. 277.04.2010
.
8.
Passano
,
R.
,
1933
, “
The Corrosion-Time Relationship of Iron
,”
Ind. Eng. Chem.
,
25
(
11
), pp.
1247
1250
.
9.
Romanoff
,
M.
,
1957
, “
Underground Corrosion
,”
National Bureau of Standards
, United States Department of Commerce, Washington, DC, Circular 579.
10.
Syed
,
S.
,
2006
, “
Atmospheric Corrosion of Materials
,”
Emirates J. Eng. Res.
,
11
(
1
), pp.
1
24
.
11.
Landolfo
,
R.
,
Cascini
,
L.
, and
Portioli
,
F.
,
2010
, “
Modeling of Metal Structure Corrosion Damage: A State of the Art Report
,”
Sustainability
,
2
(
7
), pp.
2163
2175
.
12.
Zhao
,
X.
,
Xing
,
S.
,
Yang
,
J.
, and
Zhang
,
J.
,
2014
, “
Comparative EIS Study on Atmospheric Corrosion Behaviour of Zinc–Aluminium Coated Steels Under Cyclic Wet-Dry Conditions
,”
Int. J. Electrochem. Sci.
,
9
(2014), pp.
5877
5884
.
13.
Englehardt
,
G.
, and
MacDonald
,
D. D.
,
1998
, “
Deterministic Prediction of Pit Depth Distribution
,”
Corrosion
,
54
(
6
), pp.
469
480
.
14.
Rossum
,
J. R.
,
1969
, “
Prediction of Pitting Rates in Ferrous Metals From Soil Parameters
,”
J. Am. Water Works Assoc.
,
61
(
6
), pp.
305
310
.
15.
Caleyo
,
F.
,
Velazquez
,
J.
,
Valor
,
A.
, and
Hallen
,
J.
,
2009
, “
Probability Distribution of Pitting Corrosion Depth and Rate in Underground Pipelines: A Monte Carlo Study
,”
Corrosion Sci.
,
51
(
9
), pp.
1925
1934
.
16.
Anyanwu
, I
. S.
,
Eseonu
,
O.
, and
Nwosu
,
H. U.
,
2014
, “
Experimental Investigations and Mathematical Modeling of Corrosion Growth Rate on Carbon Steel Under the Influence of Soil pH and Resistivity
,”
IOSR J. Eng.
,
4
(
10
), pp.
7
18
.
17.
BSI
,
1998
, “
Methods of Test for Soils for Civil Engineering Purposes General Requirement and Sample Preparation
,” British Standard Institution, London, UK, Standard No. BS 1377-1.
18.
ASTM
,
2012
, Standard Test Method for Field Measurement of Soil Resistivity Using The Wenner Four-Electrode Method,
American Society for Testing and Materials
,
West Conshohocken, PA
,
Standard No. G57
.
19.
ASTM
,
2010
, Standard Guide for Applying Statistics to Analysis of Corrosion Data,
American Society for Testing and Materials
,
West Conshohocken, PA
,
Standard No. G16
.
20.
Sun
,
W.
, and
Nesic
,
S.
,
2007
, “
A Mechanistic Model of H2S Corrosion of Mild Steel
,”
Corrosion Conference and Expo
, NACE International, Houston, TX,
Paper No. 07655
.
21.
OSHA
,
2005
,
Hydrogen Sulfide (H2S)
,
Occupational Safety and Health Administration, U.S. Department of Labor
, Washington, DC.
22.
Noor
,
E.
, and
Al-Moubaraki
,
A.
,
2014
, “
Influence of Soil Moisture Content on the Corrosion Behavior of X60 Steel in Different Soils
,”
Arab J. Sci. Eng.
,
39
(
7
), pp.
5421
5435
.
23.
Bhattarai
,
J.
,
2013
, “
Study on the Corrosive Nature of Soil Towards the Buried-Structures
,”
Sci. World
,
11
(
11
), pp.
43
47
.
24.
Ismail
,
A. I. M.
, and
El-Shamy
,
A. M.
,
2009
, “
Engineering Behaviours of Soil Materials on the Corrosion of Mild Steel
,”
Appl. Clay Sci.
,
42
(3–4), pp.
356
362
.
25.
Ferreira
,
C. A. M.
,
Ponciano
,
J. A. C.
,
Vaitsman
,
D. S.
, and
Perez
,
D. V.
,
2007
, “
Evaluation of the Corrosivity of the Soil Through Its Chemical Composition
,”
Sci. Total Environ.
,
388
(1–3), pp.
250
255
.
26.
Waanders
,
F.
, and
Vorster
,
S. W.
,
2013
, “
The Effect of Sulphide and Moisture Content On Steel Corrosion During Transport of Fine Wet Coal
,”
Hyperfine Interact.
,
218
(
1
), pp.
29
34
.
27.
King
,
G.
,
Klug
,
M.
,
Wiegert
,
R.
, and
Chalmers
,
A.
,
1982
, “
Relation of Soil Water Movement and Sulfide Concentration to Spartina Alterniflora Production in a Gergia Slat Marsh
,”
Science
,
218
(
4567
), pp.
61
63
.
28.
Qiu
,
J.
,
Wang
,
H.
,
Lu
,
J.
,
Zhang
,
B.
, and
Du
,
K.-L.
,
2012
, “
Neural Network Implementations for PCA and Its Extensions
,”
Int. Scholarly Res. Not.
,
2012
, p.
19
.
29.
Balas
,
C.
,
Koc
,
L. M.
, and
Tur
,
R.
,
2010
, “
Artificial Neural Networks Based on Principal Component Analysis, Fuzzy Systems and Fuzzy Neural Networks for Preliminary Design of Rubble Mound Breakwaters
,”
Appl. Ocean Res.
,
32
(
4
), pp.
425
433
.
30.
Melchers
,
R. E.
,
2003
, “
Mathematical Modeling of the Diffusion Controlled Phase in Marine Immersion Corrosion of Mild Steel
,”
Corros. Sci.
,
45
(
5
), pp.
923
940
.
You do not currently have access to this content.