Recently published analytical solutions for the remaining strength of a pipeline with narrow axial and axisymmetric volumetric flaws are described in this paper, and their experimental and numerical validation are reviewed. Next, the domains of applicability of each solution are studied, some simplifications suitable to steel pipelines are introduced, and an analytical model for the remaining strength of corroded steel pipelines is presented. This analytical solution is compared with the standards most widely used in the industry for assessment of corroded pipelines: ASME B31G, modified ASME, and DNV RP-F101. The empirical and analytical solutions are compared with respect to their most relevant parameters: critical (or flow) stress, flaw geometry parameterization, and Folias or bulging factor formulation. Finally, two common pipeline steels, API 5L grades X42 and X100, are selected to compare the different corrosion assessment methodologies. Corrosion defects of 75%, 50%, and 25% thickness reduction are evaluated. None of the experimental equations take into account the strain-hardening behavior of the pipe material, and therefore, they cannot properly model materials with very dissimilar plastic behavior. The comparison indicates that the empirical methods underestimate the remaining strength of shallow defects, which might lead to unnecessary repair recommendations. Furthermore, it was found that the use of a parameter employed by some of the empirical equations to model the assumed flaw shape leads to excessively optimistic and nonconservative results of remaining strength for long and deep flaws. Finally, the flaw width is not considered in the experimental criteria, and the comparative results suggest that the empirical solutions are somewhat imprecise to model the burst of wide flaws.

References

References
1.
Davis
,
P. M.
,
Dubois
,
J.
,
Gambardella
,
F.
,
Sanchez-Garcia
,
E.
, and
Uhlig
,
F.
,
2011
, “
Performance of European Cross-Country Oil Pipelines—Statistical Summary of Reported Spillages in 2010 and Since 1971
,” CONCAWE, Report No. 8/11.
2.
European Gas Pipeline Incident Report Group
,
2011
, “
8th Report of the European Gas Pipeline Incident Group 1970–2010
,” Report No. 11.R.0402 (version 2).
3.
McConnell
,
R. A.
, and
Haswell
,
J. V.
,
2011
, “
Pipeline Product Loss Incidents (1962–2010)
,” United Kingdom Onshore Pipeline Operators' Association, Derbyshire, Report No. 11/076.
4.
U.S. Department of Transportation
, 2012, “
Pipeline and Hazardous Materials Safety Administration, Pipeline Incident and Mileage Reports
,” accessed June 6, 2011, http://www.phmsa.dot.gov
5.
National Energy Board of Canada
,
2010
, “
Comparative Analysis of Pipeline Performance 2000–2008
,” accessed January 12, 2012, http://www.neb-one.gc.ca
6.
Kiefner
,
J. F.
,
Maxey
,
W. A.
,
Eiber
,
R. J.
, and
Duffy
,
A. R.
,
1973
, “
Failure Stress Levels in Pressurized Cylinders
,”
Progress in Flaw Growth and Fracture Toughness Testing, ASTM STP 536
, ASTM International, West Conshohocken, PA, pp.
461
481
.
7.
Kiefner
,
J. F.
, and
Veith
,
P. H.
,
1989
, “
A Modified Criterion for Evaluating the Remaining Strength of Corroded Pipeline
,” Pipeline Research Council International,
Report No. L51688Be
.http://www.osti.gov/scitech/biblio/7181509
8.
Wang
,
Y. S.
,
1991
, “
An Elastic Limit Criterion for the Remaining Strength of Corroded Pipe
,”
International Conference on Offshore Mechanics and Artic Engineering
, Vol.
V
, pp. 179–186.
9.
Bubenik
,
T. A.
,
Olson
,
R. J.
,
Stephens
,
D. R.
, and
Francini
,
R. B.
,
1992
, “
Analyzing the Pressure Strength of Corroded Line Pipe
,”
International Conference on Offshore Mechanics and Arctic Engineering
, Vol.
V-A
, pp. 225–231.
10.
Chouchaoui
,
B. A.
,
Pick
,
R. J.
, and
Yost
,
D. B.
,
1992
, “
Burst Pressure Predictions of Line Pipe Containing Single Corrosion Pits Using the Finite Element Method
,”
International Conference on Offshore Mechanics and Arctic Engineering
, Vol.
V-A
, pp. 203–210.
11.
Kiefner
,
J. F.
, and
Veith
,
P. H.
,
1993
, “
Database of Corroded Pipe Tests
,” Pipeline Research Council International, Report No. L51689e.
12.
Kiefner
,
J. F.
,
Veith
,
P. H.
, and
Roytman
,
I.
,
1996
, “
Continued Validation of RSTRENG
,” Pipeline Research Council International, Report No. L51749e.
13.
Netto
,
T. A.
,
Ferraz
,
U. S.
, and
Estefen
,
S. F.
,
2005
, “
The Effect of Corrosion Defects on the Burst Pressure of Pipelines
,”
J. Constr. Steel Res.
,
61
(
8
), pp.
1185
1204
.
14.
Benjamim
,
A. C.
, and
Andrade
,
E. Q.
,
2003
, “
Modified Method for the Assessment of the Strength of Corroded Pipeline
,”
Rio Pipeline Conference
, Paper No. IBP 413-03.
15.
The American Society of Mechanical Engineers
,
1991
, “
ASME B31G—Manual for Determining the Remaining Strength of Corroded Pipelines
,” American Society of Mechanical Engineers, New York.
16.
DNV
,
1999
, “
Recommended Practice DNV RP-F101—Corroded Pipelines
,” Det Norske, Veritas, Høvik, Norway.
17.
Sigurdsson
,
G.
,
Cramer
,
E. H.
,
Bjørnøy
,
O. H.
,
Fu
,
B.
, and
Ritchie
,
D.
,
1999
, “
Background to DNV RP-F101 Corroded Pipelines
,”
International Conference on Offshore Mechanics and Arctic Engineering
, Paper No. OMAE 99/PIPE-5031.
18.
Bjørnøy
,
O. H.
,
Sigurdsson
,
G.
,
Cramer
,
E. H.
,
Fu
,
B.
, and
Ritchie
,
D.
,
1999
, “
Introduction to DNV RP-F101 Corroded Pipelines
,”
International Conference on Offshore Mechanics and Arctic Engineering
, Paper No. OMAE 99/PIPE-5030.
19.
Kanninen
,
M. F.
,
Pagalthivarthi
,
K. V.
, and
Popelar
,
C. H.
,
1992
, “
A Theoretical Analysis for the Residual Strength of Corroded Gas and Oil Transmission Pipelines
,”
Corrosion Forms and Control for Infrastructure
, ASTM International, West Conshohocken, PA, Standard No. ASTM STP 1137, pp.
183
198
.http://www.astm.org/DIGITAL_LIBRARY/STP/PAGES/STP19762S.htm
20.
Stewart
,
G.
,
Klever
,
F. J.
, and
Ritchie
,
D.
,
1994
, “
An Analytical Model to Predict the Burst Capacity of Pipelines
,”
International Conference on Offshore Mechanics and Arctic Engineering, Pipeline Technology
, Vol.
5
, pp.
177
188
.http://www.osti.gov/scitech/biblio/55751
21.
Stephens
,
D. R.
,
Leis
,
B. N.
,
Kurre
,
M. D.
, and
Rudland
,
D.
,
1999
, “
Development of an Alternative Failure Criterion for Residual Strength of Corrosion Defects in Moderate to High Toughness Pipe
,” Pipeline Research Council International,
Report No. L51794
.http://www.osti.gov/scitech/biblio/325700
22.
Cunha
,
S. B.
, and
Netto
,
T. A.
,
2012
, “
Analytical Solution for Stress, Strain and Plastic Instability of Pressurized Pipes With Volumetric Flaws
,”
Int. J. Pressure Vessels Piping
,
89
, pp.
187
212
.
23.
Timoshenko
,
S. P.
, and
Goodier
,
J. N.
,
1970
,
Theory of Elasticity
,
3rd ed.
,
McGraw-Hill
, New York.
24.
Considère
,
M.
,
1885
, “
Mémoires sur L'employ du Fer et de L'acier dans les Constructions
,”
Ann. Ponts Chausses
,
6
(
9
), pp.
574
775
.
25.
Zhu
,
X.
, and
Leis
,
B. N.
,
2006
, “
Average Shear Stress Yield Criterion and Its Application to Plastic Collapse Analysis of Pipelines
,”
Int. J. Pressure Vessels Piping
,
83
(
9
), pp.
663
671
.
26.
Zhu
,
X.
, and
Leis
,
B. N.
,
2007
, “
Theoretical and Numerical Predictions of Burst Pressure of Pipelines
,”
ASME J. Pressure Vessel Technol.
,
129
(
4
), pp.
644
652
.
27.
Law
,
M.
, and
Bowie
,
G.
,
2007
, “
Prediction of Failure Strain and Burst Pressure in High Yield-To-Tensile Strength Ratio Linepipe
,”
Int. J. Pressure Vessels Piping
,
84
(
8
), pp.
487
492
.
28.
Brabin
,
T. A.
,
Christopher
,
T.
, and
Rao
,
B. N.
,
2011
, “
Bursting Pressure of Mild Steel Vessels
,”
Int. J. Pressure Vessels Piping
,
88
(3), pp.
119
122
.
29.
Dieter
,
G. E.
,
1988
,
Mechanical Metallurgy—SI Metric Edition
,
D.
Bacon
, ed.,
McGraw-Hill
, New York.
30.
ABAQUS/Standard
,
2005
, “
ABAQUS/Standard User's Manual ver. 6.5
,” Dassault Systèmes Simulia Corp., Providence, RI.
31.
Cunha
,
S. B.
,
2007
, “
Analytical Solution for the Plastic Instability of Internally Pressurized Pipes With Volumetric Flaws
,”
Rio Pipeline Conference
, Paper No. IBP 1045-07.
32.
Shuai
,
J.
,
Chun'e
,
Z.
,
Fulai
,
C.
, and
Renyang
,
H.
,
2008
, “
Prediction of Failure Pressure of Corroded Pipelines Based on Finite Element Analysis
,”
ASME
Paper No. IPC2008-64260.
33.
Zhu
,
X.
, and
Leis
,
B. N.
,
2005
, “
Influence of Yield-to-Tensile Strength Ratio on Failure Assessment of Corroded Pipelines
,”
ASME J. Pressure Vessel Technol.
,
127
(
4
), pp.
436
442
.
34.
Vieira
,
R. D.
,
2014
, “
Ensaios de Tração nos Materiais Base de Nove Tubos Usados na Confecção dos Espécimes Tubulares
,” Pontifícia Universidade Católica PUC-RJ, Report for PETROBRAS, Contract No. 004/CTDUT/2014.
35.
Souza
,
R. D.
,
2003
, “
Avaliação Estrutural de Dutos com Defeitos de Corrosão Reais
,” M.Sc. dissertation, Pontifícia Universidade Católica PUC-RJ, Rio de Janeiro, Brazil.
36.
Leis
,
B. N.
,
Walsh
,
W. J.
, and
Brust
,
F. W.
,
1990
, “
Mechanical Behavior of Selected Line-Pipe Steels
,” Batelle Report No. L51624.
37.
Teixeira
,
J. C. G.
,
2003
, “
Avaliação de Defeitos Planares em Dutos
,” PETROBRAS Internal Report No. PRODUT 600377 - RT TMEC 015/03.
38.
Teixeira
,
J. C. G.
,
2003
, “
Estudos de Aplicação de Aços API X-80 para Tubos
,” PETROBRAS Internal Report No. PRODUT 600237.
39.
Benjamim
,
A. C.
,
Andrade
,
E. Q.
,
Jacob
,
B. P.
,
Pereira
,
L. C.
, and
Machado
,
R. S.
, Jr
.,
2006
, “
Failure Behavior of Colonies Corrosion Defects Composed of Symmetrically Arranged Defects
,”
ASME
Paper No. IPC 2006-10266.
40.
API
,
2010
, “
Specification for Line Pipe
,” American Petroleum Institute, Wasington, DC, Standard No. API 5L.
41.
ASME
,
2012
, “
ASME B31G—Manual for Determining the Remaining Strength of Corroded Pipelines
,” American Society for Mechanical Engineers, New York.
You do not currently have access to this content.