A theoretical model for wave propagation across solid–fluid interfaces with fluid–structure interaction (FSI) was explored by conducting experiments. Although many studies have been conducted on solid–solid and fluid–fluid interfaces, the mechanism of wave propagation across solid–fluid interfaces has not been well examined. Consequently, our aim is to clarify the mechanism of wave propagation across a solid–fluid interface with the movement of the interface and develop a theoretical model to explain this phenomenon. In the experiments conducted, a free-falling steel projectile was used to impact a solid buffer placed immediately above the surface of water within a polycarbonate (PC) tube. Two different buffers (aluminum and polycarbonate) were used to examine the relation between wave propagation across the interface of the buffer and water and the interface movement. With the experimental results, we confirmed that the peak value of the interface pressure can be predicted via acoustic theory based on the assumption that projectile and buffer behave as an elastic body with local deformation by wave propagation. On the other hand, it was revealed that the average profile of the interface pressure can be predicted with the momentum conservation between the projectile and the buffer assumed to be rigid and momentum increase of fluid. The momentum transmitted to the fluid gradually increases as the wave propagates and causes a gradual decrease in the interface pressure. The amount of momentum was estimated via the wave speed in the fluid-filled tube by taking into account the coupling of the fluid and the tube.

References

References
1.
Bergant
,
A.
,
Simpson
,
A. R.
, and
Tijsseling
,
A. S.
,
2006
, “
Water Hammer With Column Separation: A Historical Review
,”
J. Fluids Struct.
,
22
(
2
), pp.
135
171
.
2.
van de Vosse
,
Frans
,
N.
, and
Stergiopulos
,
N.
,
2011
, “
Pulse Wave Propagation in the Arterial Tree
,”
Annu. Rev. Fluid Mech.
,
43
(
1
), pp.
467
499
.
3.
Rajendran
,
R.
, and
Narasimhan
,
K.
,
2001
, “
Linear Elastic Shock Response of Plane Plates Subjected to Underwater Explosion
,”
Int. J. Impact Eng.
,
25
(
5
), pp.
493
506
.
4.
Korteweg
,
D. J.
,
1978
, “
Ueber die Fortpflanzungsgeschwindigkeit des Schalles in Elastischen Röhren
,”
Ann. Phys. Chem.
,
241
(
12
), pp.
525
542
.
5.
Joukowsky
,
N.
,
1900
, “
Uüber den Hydraulischen Stoss in Wasserleitungsrohren
,”
Mém. Acad. Imp. Sci. St. Pétersbourg
,
9
(
5
), pp.
1
71
.
6.
Skalak
,
R.
,
1956
, “
An Extension to the Theory of Water Hammer
,”
Trans. ASME
,
78
, pp.
105
116
.
7.
Wiggert
,
D. C.
, and
Tijsseling
,
A. S.
,
2001
, “
Fluid Transients and Fluid-Structure Interaction in Flexible Liquid-Filled Piping
,”
ASME Appl. Mech. Rev.
,
54
(
5
), pp.
455
481
.
8.
Tijsseling
,
A. S.
,
1996
, “
Fluid-Structure Interaction in Liquid-Filled Pipe Systems: A Review
,”
J. Fluids Struct.
,
10
(
2
), pp.
109
146
.
9.
Tijsseling
,
A. S.
,
2003
, “
Exact Solution of Linear Hyperbolic Four-Equation System in Axial Liquid-Pipe Vibration
,”
J. Fluids Struct.
,
18
(
2
), pp.
179
196
.
10.
Li
,
Q. S.
,
Yang
,
K.
, and
Zhang
,
Y.
,
2003
, “
Analytical Solution for Fluid-Structure Interaction in Liquid-Filled Pipes Subjected to Impact-Induced Water Hammer
,”
J. Eng. Mech.
,
129
(
12
), pp.
1408
1417
.
11.
Inaba
,
K.
, and
Shepherd
,
J. E.
,
2010
, “
Flexural Waves in Fluid-Filled Tubes Subject to Axial Impact
,”
ASME J. Pressure Vessel Technol.
,
132
(
2
), p.
021302
.
12.
Inaba
,
K.
,
Kamijukkoku
,
M.
,
Takahashi
,
K.
, and
Kishimoto
,
K.
,
2013
, “
Transient Behavior of Water Hammer in a Two-Pipe System
,”
ASME
Paper No. PVP2013-97855.
13.
Kollika
,
N.
,
Inaba
,
K.
,
Hori
,
T.
, and
Kishimoto
,
K.
,
2013
, “
Effect of a Single Particle on Water-Tube Interaction Subjected to Axial Impact Loading
,”
Theor. Appl. Mech. Jpn.
,
61
(
2013
), pp.
151
160
.
14.
Ando
,
K.
,
Sanada
,
T.
,
Inaba
,
K.
,
Damazo
,
J. S.
,
Shepherd
,
J. E.
,
Colonius
,
T.
, and
Brennen
,
C. E.
,
2011
, “
Shock Propagation Through a Bubbly Liquid in a Deformable Tube
,”
J. Fluid Mech.
,
671
, pp.
339
363
.
15.
Schiffer
,
A.
,
Tagarielli
,
V. L.
,
Petrinic
,
N.
, and
Cocks
,
A. C. F.
,
2012
, “
The Response of Rigid Plates to Deep Water Blast: Analytical Models and Finite Element Predictions
,”
ASME J. Appl. Mech.
,
79
(
6
), p.
061014
.
16.
Deshpande
,
V. S.
, and
Fleck
,
N. A.
,
2005
, “
One-Dimensional Response of Sandwich Plates to Underwater Shock Loading
,”
J. Mech. Phys. Solids
,
53
(
11
), pp.
2347
2383
.
17.
Deshpande
,
V. S.
,
Heaver
,
A.
, and
Fleck
,
N. A.
,
2006
, “
An Underwater Shock Simulator
,”
Proc. R. Soc. A
,
462
(
2067
), pp.
1021
1041
.
18.
Schiffer
,
A.
, and
Tagarielli
,
V. L.
,
2014
, “
One-Dimensional Response of Sandwich Plates to Underwater Blast: Fluid-Structure Interaction Experiments and Simulations
,”
Int. J. Impact Eng.
,
71
, pp.
34
49
.
19.
Schiffer
,
A.
, and
Tagarielli
,
V. L.
,
2014
, “
The Dynamic Response of Composite Plates to Underwater Blast: Theoretical and Numerical Modelling
,”
Int. J. Impact Eng.
,
70
, pp.
1
13
.
20.
Schiffer
,
A.
, and
Tagarielli
,
V. L.
,
2015
, “
The Response of Circular Composite Plates to Underwater Blast: Experiments and Modelling
,”
J. Fluids Struct.
,
52
, pp.
130
144
.
21.
Graff
,
K. F.
,
1975
,
Wave Motion in Elastic Solids
,
Dover Publications
,
New York
.
22.
Meyers
,
M. A.
,
1994
,
Dynamic Behavior of Materials
,
Wiley-Interscience
,
New York
.
23.
Fung
,
Y. C.
,
1997
,
Biomechanics: Circulation
,
2nd ed.
,
Springer-Verlag
,
New York
.
24.
Tijsseling
,
A. S.
, and
Anderson
,
A.
,
2006
, “
The Joukowsky Equation for Fluids and Solids
,” Eindhoven University of Technology, Eindhoven, The Netherlands,
CASA-Report No. 0608
.
25.
Inaba
,
K.
, and
Shepherd
,
J. E.
,
2010
, “
Dynamics of Cavitating Flow and Flexural Waves in Fluid-Filled Tubes Subject to Axial Impact
,”
ASME
Paper No. PVP2010-25989.
26.
Tijsseling
,
A. S.
,
2007
, “
Water Hammer With Fluid–Structure Interaction in Thick-Walled Pipes
,”
Comput. Struct.
,
85
(
11–14
), pp.
844
851
.
27.
Hayashi
,
T.
, and
Tanaka
,
K.
,
1988
,
Impact Engineering
,
Nikkan Kogyo Shimbun
,
Tokyo, Japan
.
28.
Zhao
,
H.
, and
Gary
,
G.
,
1995
, “
A Three Dimensional Analytical Solution of the Longitudinal Wave Propagation in an Infinite Linear Viscoelastic Cylindrical Bar. Application to Experimental Techniques
,”
J. Mech. Phys. Solids
,
43
(
8
), pp.
1335
1348
.
29.
Casem
,
D. T.
,
Fourney
,
W.
, and
Chang
,
P.
,
2003
, “
Wave Separation in Viscoelastic Pressure Bars Using Single-Point Measurements of Strain and Velocity
,”
Polym. Test.
,
22
(
2
), pp.
155
164
.
30.
Kolsky
,
H.
,
1963
,
Stress Waves in Solids
,
Dover Publications
,
New York
.
You do not currently have access to this content.