Design of the top wind stiffeners of aboveground storage tanks designed to the requirements of API 650 is investigated. The current design methodology is based on intuition and experience without a sound technical justification. This paper investigates a diameter limit to be used in the design of the top stiffener ring by using finite-element analysis (FEA) in a parametric study. Linear bifurcation analysis (LBA) and geometrically nonlinear analysis including imperfections (GNIA) were performed on cylindrical storage tanks. By modeling tanks with different diameters and limiting the design of top stiffener ring for a diameter of 170-ft (52-m), the buckling loads are investigated. It was found that the 170-ft (52-m) diameter is a suitable upper limit to design the top stiffener rings for larger diameters.

References

References
1.
API
,
2013
, “
Welded Tanks for Oil Storage
,” American Petroleum Institute, Washington, DC,
Standard No. 650
.
2.
Myers
,
P. E.
,
1997
,
Aboveground Storage Tanks
,
McGraw-Hill
,
New York
.
3.
DiGrado
,
B. D.
, and
Thorp
,
G. A.
,
1995
,
The Aboveground Steel Storage Tank Handbook
,
Van Nostrand Reinhold
,
New York
.
4.
Timoshenko
,
S.
,
1940
,
Theory of Plates and Shells
,
McGraw-Hill Book Company
,
New York
.
5.
Jenkins
,
R. S.
,
1947
,
Theory and Design of Cylindrical Shell Structures
,
O. N. Arup Group of Consulting Engineers
,
London
.
6.
Calladine
,
C. R.
,
1983
,
Theory of Shell Structures
,
Cambridge University Press
,
Cambridge, UK
.
7.
Zick
,
L. P.
, and
McGrath
,
R. V.
,
1968
, “
Design of Large Diameter Cylindrical Shells
,” API Division of Refining, American Petroleum Institute, New York, Vol.
48
, pp.
1114
1140
.
8.
Buzek
,
J.
,
1979
, “
Hoop Forces in Cylindrical Liquid Storage Tanks
,” Correspondence—API Subcommittee on Pressure Vessels and Tanks,
Washington, DC
.
9.
Azzuni
,
E.
, and
Guzey
,
S.
,
2015
, “
Comparison of the Shell Design Methods for Cylindrical Liquid Storage Tanks
,”
Eng. Struct.
,
101
, pp.
621
630
.
10.
Shih
,
C. F.
, and
Babcock
,
C. D.
,
1987
, “
Buckling of Oil Storage Tanks in SPPL Tank Farm During the 1979 Imperial Valley Earthquake
,”
ASME J. Pressure Vessel Technol.
,
109
(
2
), pp.
249
255
.
11.
Zama
,
S.
,
2004
, “
Liquid Sloshing of Oil Storage Tanks and Long-Period Strong Ground Motions in the 2003 Tokachi-Oki Earthquake
,”
ASME
/JSME Pressure Vessels and Piping Conference, San Diego, CA, July 25–29, ASME Paper No. PVP2004-3076.
12.
Zui
,
H.
,
Shinke
,
T.
, and
Nishimura
,
A.
,
1987
, “
Experimental Studies on Earthquake Response Behavior of Cylindrical Tanks
,”
ASME J. Pressure Vessel Technol.
,
109
(
1
), pp.
50
57
.
13.
Haroun
,
M. A.
, and
Housner
,
G. W.
,
1981
, “
Earthquake Response of Deformable Liquid Storage Tanks
,”
ASME J. Appl. Mech.
,
48
(
2
), pp.
411
418
.
14.
Taniguchi
,
T.
, and
Katayama
,
Y.
,
2016
, “
Masses of Fluid for Cylindrical Tanks in Rock With Partial Uplift of Bottom Plate
,”
ASME J. Pressure Vessel Technol.
,
138
(
5
), p.
051301
.
15.
Matsui
,
T.
,
2009
, “
Sloshing in a Cylindrical Liquid Storage Tank With a Single-Deck Type Floating Roof Under Seismic Excitation
,”
ASME J. Pressure Vessel Technol.
,
131
(
2
), p.
021303
.
16.
Rish
,
R. F.
,
1967
, “
Forces in Cylindrical Chimneys Due to Wind
,”
ICE Proceedings
, pp.
791
803
.
17.
Resinger
,
F.
, and
Greiner
,
R.
,
1982
, “
Buckling of Wind Loaded Cylindrical Shells—Application to Unstiffened and Ring-Stiffened Tanks
,”
Buckling of Shells
,
Springer
,
Berlin
, pp.
305
331
.
18.
Pircher
,
M.
,
Guggenberger
,
W.
,
Greiner
,
R.
, and
Bridge
,
R.
,
1998
, “
Stresses in Elastic Cylindrical Shells Under Wind Load
,”
Thin-Walled Structures: Research and Development
,
University of Western Sydney
,
Nepean, ON, Canada
, pp.
663
669
.
19.
Gorenc
,
B. E.
, and
Rotter
,
J. M.
,
1986
, “
Guidelines for the Assessment of Loads on Bulk Solids Containers
,” Institution of Engineers, Australia, Working Party on Bins and Silos,
Canberra
,
Australia
.
20.
Sabransky
,
I. J.
, and
Melbourne
,
W. H.
,
1987
, “
Design Pressure Distribution on Circular Silos With Conical Roofs
,”
J. Wind Eng. Ind. Aerodyn.
,
26
(
1
), pp.
65
84
.
21.
MacDonald
,
P. A.
,
Kwok
,
K. C. S.
, and
Holmes
,
J. D.
,
1988
, “
Wind Loads on Circular Storage Bins, Silos, and Tanks: I. Point Pressure Measurements on Isolated Structures
,”
J. Wind Eng. Ind. Aerodyn.
,
31
(
2–3
), pp.
165
187
.
22.
MacDonald
,
P. A.
,
Holmes
,
J. D.
, and
Kwok
,
K. C. S.
,
1990
, “
Wind Loads on Circular Storage Bins, Silos, and Tanks. II. Effect of Grouping
,”
J. Wind Eng. Ind. Aerodyn.
,
34
(
1
), pp.
77
95
.
23.
Uematsu
,
Y.
,
Yasunaga
,
J.
, and
Koo
,
C.
,
2015
, “
Design Wind Loads for Open-Topped Storage Tanks in Various Arrangements
,”
J. Wind Eng. Ind. Aerodyn.
,
138
, pp.
77
86
.
24.
Holroyd
,
R. J.
,
1983
, “
On the Behavior of Open-Topped Oil Storage Tanks in High Winds. Part I. Aerodynamic Aspects
,”
J. Wind Eng. Ind. Aerodyn.
,
12
(
3
), pp.
329
352
.
25.
Portela
,
G.
, and
Godoy
,
L. A.
,
2005
, “
Wind Pressures and Buckling of Cylindrical Steel Tanks With a Conical Roof
,”
J. Constr. Steel Res.
,
61
(
6
), pp.
786
807
.
26.
Portela
,
G.
, and
Godoy
,
L. A.
,
2005
, “
Wind Pressures and Buckling of Cylindrical Steel Tanks With a Dome Roof
,”
J. Constr. Steel Res.
,
61
(
6
), pp.
808
824
.
27.
Burgos
,
C. A.
,
Batista-Abreu
,
J. C.
,
Calabró
,
H. D.
,
Jaca
,
R. C.
, and
Godoy
,
L. A.
,
2015
, “
Buckling Estimates for Oil Storage Tanks: Effect of Simplified Modeling of the Roof and Wind Girder
,”
Thin-Walled Struct.
,
91
, pp.
29
37
.
28.
Jerath
,
S.
, and
Sadid
,
H.
,
1985
, “
Buckling of Orthotropic Cylinders Due to Wind Load
,”
J. Eng. Mech.
,
111
(
5
), pp.
610
622
.
29.
Burgos
,
C. A.
,
Jaca
,
R. C.
,
Lassig
,
J. L.
, and
Godoy
,
L. A.
,
2014
, “
Wind Buckling of Tanks With Conical Roof Considering Shielding by Another Tank
,”
Thin-Walled Struct.
,
84
, pp.
226
240
.
30.
Aghajari
,
S.
,
Abedi
,
K.
, and
Showkati
,
H.
,
2006
, “
Buckling and Post-Buckling Behavior of Thin-Walled Cylindrical Steel Shells With Varying Thickness Subjected to Uniform External Pressure
,”
Thin-Walled Struct.
,
44
(
8
), pp.
904
909
.
31.
Chen
,
L.
,
Rotter
,
J. M.
, and
Doerich
,
C.
,
2011
, “
Buckling of Cylindrical Shells With Stepwise Variable Wall Thickness Under Uniform External Pressure
,”
Eng. Struct.
,
33
(
12
), pp.
3570
3578
.
32.
Holroyd
,
R. J.
,
1985
, “
On the Behavior of Open-Topped Oil Storage Tanks in High Winds. Part II. Structural Aspects
,”
J. Wind Eng. Ind. Aerodyn.
,
18
(
1
), pp.
53
73
.
33.
Zhao
,
Y.
, and
Lin
,
Y.
,
2014
, “
Buckling of Cylindrical Open-Topped Steel Tanks Under Wind Load
,”
Thin-Walled Struct.
,
79
, pp.
83
94
.
34.
Uematsu
,
Y.
,
Koo
,
C.
, and
Yasunaga
,
J.
,
2014
, “
Design Wind Force Coefficients for Open-Topped Oil Storage Tanks Focusing on the Wind-Induced Buckling
,”
J. Wind Eng. Ind. Aerodyn.
,
130
, pp.
16
29
.
35.
Schmidt
,
H.
,
Binder
,
B.
, and
Lange
,
H.
,
1998
, “
Postbuckling Strength Design of Open Thin-Walled Cylindrical Tanks Under Wind Load
,”
Thin-Walled Struct.
,
31
(
1–3
), pp.
203
220
.
36.
Jaca
,
R. C.
,
Godoy
,
L. A.
,
Flores
,
F. G.
, and
Croll
,
J. G. A.
,
2007
, “
A Reduced Stiffness Approach for the Buckling of Open Cylindrical Tanks Under Wind Loads
,”
Thin-Walled Struct.
,
45
(
9
), pp.
727
736
.
37.
Sosa
,
E. M.
, and
Godoy
,
L. A.
,
2010
, “
Challenges in the Computation of Lower-Bound Buckling Loads for Tanks Under Wind Pressures
,”
Thin-Walled Struct.
,
48
(
12
), pp.
935
945
.
38.
Flores
,
F. G.
, and
Godoy
,
L. A.
,
1998
, “
Buckling of Short Tanks Due to Hurricanes
,”
Eng. Struct.
,
20
(
8
), pp.
752
760
.
39.
Godoy
,
L. A.
,
2016
, “
Buckling of Vertical Oil Storage Steel Tanks: Review of Static Buckling Studies
,”
Thin-Walled Struct.
,
103
, pp.
1
21
.
40.
Bu
,
F.
, and
Qian
,
C.
,
2016
, “
On the Rational Design of the Top Wind Girder of Large Storage Tanks
,”
Thin-Walled Struct.
,
99
, pp.
91
96
.
41.
Bresse
,
J. A. C.
,
1866
,
Cours de Mécanique Appliquée, Professé à l’École Impériale des Ponts et Chausées
,
Gauthier-Villars
,
Paris, France
.
42.
von Mises
,
R.
,
1931
,
The Critical External Pressure of Cylindrical Tubes
,
U.S. Experimental Model Basin
,
Navy Yard
,
Washington, DC
.
43.
Windenburg
,
D. F.
, and
Trilling
,
C.
,
1934
, “
Collapse by Instability of Thin Cylindrical Shells Under External Pressure
,”
Trans. ASME
,
11
, pp.
819
825
.
44.
McGrath
,
R. V.
,
1963
, “
Stability of API Standard 650 Tank Shells
,” American Petroleum Institute, Vol.
3
, pp.
458
469
.
45.
Vodenitcharova
,
T.
, and
Ansourian
,
P.
,
1996
, “
Buckling of Circular Cylindrical Shells Subject to Uniform Lateral Pressure
,”
Eng. Struct.
,
18
(
8
), pp.
604
614
.
46.
Morris
,
N. F.
,
1996
, “
SSRC: Link Between Research and Practice Shell Stability: The Long Road From Theory to Practice
,”
Eng. Struct.
,
18
(
10
), pp.
801
806
.
47.
AWWA
,
1935
, “
Standard Specifications for Elevated Steel Water Tanks, Standpipes and Reservoirs
,” American Water Works Association, Denver, CO, Vol.
27
, pp.
1606
1625
.
48.
Adams
,
J. H.
,
1975
, “
A Study of Wind Girder Requirements for Large AP1650 Floating Roof Tanks
,”
Refining, 40th Mid-Year Meeting
, American Petroleum Institute,
Washington, DC
, pp.
16
75
.
49.
Azzuni
,
E.
, and
Guzey
,
S.
,
2016
, “
A Review of the Shell Buckling and Stiffener Ring Design for Cylindrical Steel Storage Tanks
,”
ASME
Paper No. PVP2016-63204.
50.
BS
,
2004
, “
Specification for the Design and Manufacture of Site Built, Vertical, Cylindrical, Flat-Bottomed, Above Ground, Welded, Steel Tanks for the Storage of Liquids at Ambient Temperature and Above
,” British Standard Institute, London, UK, Standard No. BS EN 14015.
51.
European Committee for Standardization
,
2007
, “
Eurocode 3: Design of Steel Structures—Part 4-1: Silos
,”
The European Union
,
Brussels, Belgium
.
52.
ASME
,
2010
, “
ASME Boiler & Pressure Vessel Code an International Code. Section VIII, Rules for Construction of Pressure Vessels, Division 1
,”
ASME International
,
New York
.
53.
Blackler
,
M. J.
,
1986
, “
Stability of Silos and Tanks Under Internal and External Pressure
,” Ph.D. thesis, University of Sydney, Camperdown, NSW.
54.
Ansourian
,
P.
,
1992
, “
On the Buckling Analysis and Design of Silos and Tanks
,”
J. Constr. Steel Res.
,
23
(
1–3
), pp.
273
284
.
55.
Teng
,
J. G.
, and
Rotter
,
J. M.
,
2004
,
Buckling of Thin Metal Shells
,
Spon Press
,
London
.
56.
Bu
,
F.
, and
Qian
,
C.
,
2015
, “
A Rational Design Approach of Intermediate Wind Girders on Large Storage Tanks
,”
Thin-Walled Struct.
,
92
, pp.
76
81
.
57.
von Mises
,
R.
, and
Windenburg
,
D. F.
,
1933
, “
The Critical External Pressure of Cylindrical Tubes Under Uniform Radial and Axial Load
,”
DTIC Document
,
Washington, DC
.
58.
Tokugawa
,
T.
,
1929
, “
Model Experiments on the Elastic Stability of Closed and Cross-Stiffened Circular Cylinders Under Uniform External Pressure
,”
World Engineering Congress, Tokyo, Japan, Vol.
29
, pp.
249
279
.
59.
AWWA
,
1949
, “
Standard Specifications for Elevated Steel Water Tanks, Standpipes, and Reservoirs
,” American Water Works Association, Denver, CO, Vol.
41
, pp.
357
396
.
60.
Young
,
W. C.
, and
Budynas
,
R. G.
,
2002
,
Roark's Formulas for Stress and Strain
,
7th ed.
,
McGraw-Hill
,
New York
.
61.
Daniel
,
I. M.
,
1960
, “
Stress Analysis of a Cylindrical Shell Ring Stiffener
,” ASME Paper No. 60-PET-26.
62.
Dassault Systemes
,
2013
, “
ABAQUS Analysis User's Manual Version 6.13
,” Dassault Systemes Simulia, Providence, RI.
63.
Godoy
,
L. A.
, and
Flores
,
F. G.
,
2002
, “
Imperfection Sensitivity to Elastic Buckling of Wind Loaded Open Cylindrical Tanks
,”
Struct. Eng. Mech.
,
13
(
5
), pp.
533
542
.
64.
Riks
,
E.
,
1979
, “
An Incremental Approach to the Solution of Snapping and Buckling Problems
,”
Int. J. Solids Struct.
,
15
(
7
), pp.
529
551
.
You do not currently have access to this content.