The smoothed inverse eigenstrain method is revisited for the reconstruction of residual fields and eigenstrains from limited strain measurements within axially symmetric tubes. The application of the present approach is successfully demonstrated for two cases of analytical solution and experimental measurements. The well-known advantage of the smoothed inverse eigenstrain approach is that it not only minimizes the deviation of measurements from the model predictions but also will result in an inverse solution satisfying all of the continuum mechanics requirements. As a result, less number of experimental measurements is required to reconstruct the complete residual fields. Consequently, the distribution of residual stresses is obtained without requiring the details of the hardening behavior of the material. Furthermore, the eigenstrain field is inversely determined satisfying the total strain compatibility equations, and a closed form analytical solution is presented for the distribution of eigenstrains.

References

References
1.
Kendall
,
D. P.
,
2000
, “
A Short History of High Pressure Technology From Bridgman to Division 3
,”
ASME J. Pressure Vessel Technol.
,
122
(
3
), pp.
229
233
.
2.
Stacey
,
A.
, and
Webster
,
G. A.
,
1998
, “
Determination of Residual Stress Distributions in Autofrettaged Tubing
,”
Int. J. Pressure Vessels Piping
,
31
(
3
), pp.
205
220
.
3.
Lazzarin
,
P.
, and
Livieri
,
P.
,
1997
, “
Different Solutions for Stress and Strain Fields in Autofrettaged Thick-Walled Cylinders
,”
Int. J. Pressure Vessels Piping
,
71
(
3
), pp.
231
238
.
4.
Gao
,
X.
,
1992
, “
An Exact Elasto-Plastic Solution for an Open-Ended Thick-Walled Cylinder of a Strain-Hardening Material
,”
Int. J. Pressure Vessels Piping
,
52
(
1
), pp.
129
144
.
5.
Huang
,
X.
,
2005
, “
A General Autofrettage Model of a Thick-Walled Cylinder Based on Tensile-Compressive Stress-Strain Curve of a Material
,”
J. Strain Anal. Eng. Des.
,
40
(
6
), pp.
599
608
.
6.
Hosseinian
,
E.
,
Farrahi
,
G. H.
, and
Movahhedy
,
M. R.
,
2009
, “
An Analytical Framework for the Solution of Autofrettaged Tubes Under Constant Axial Strain Condition
,”
ASME J. Pressure Vessel Technol.
,
131
(
6
), p.
061201
.
7.
Parker
,
A. P.
,
2001
, “
Autofrettage of Open-End Tubes-Pressures, Stresses, Strains and Code Comparisons
,”
ASME J. Pressure Vessel Technol.
,
123
(
3
), pp.
271
281
.
8.
Gibson
,
M. C.
,
Hameed
,
A.
,
Parker
,
A. P.
, and
Hetherington
,
J.
,
2006
, “
A Comparison of Methods for Predicting Residual Stresses in Strain-Hardening, Autofrettage Thick Cylinders, Including the Bauschinger Effect
,”
ASME J. Pressure Vessel Technol.
,
128
(
2
), pp.
217
222
.
9.
Farrahi
,
G. H.
,
Hosseinian
,
E.
, and
Assempour
,
A.
,
2008
, “
General Variable Material Property Formulation for the Solution of Autofrettaged Thick-Walled Tubes With Constant Axial Strains
,”
ASME J. Pressure Vessel Technol.
,
130
(
4
), p.
041209
.
10.
Venter
,
A. M.
,
de Swardt
,
R. R.
, and
Kyriacou
,
S.
,
2000
, “
Comparative Measurements on Autofrettaged Cylinders With Large Bauschinger Reverse Yielding Zones
,”
J. Strain Anal. Eng. Des.
,
35
(
6
), pp.
459
469
.
11.
Perry
,
J.
, and
Aboudi
,
J.
,
2003
, “
Elasto-Plastic Stresses in Thick Walled Cylinders
,”
ASME J. Pressure Vessel Technol.
,
125
(
3
), pp.
248
252
.
12.
Krawitz
,
A. D.
,
2011
, “
Neutron Strain Measurement
,”
Mater. Sci. Technol.
,
27
(
3
), pp.
589
603
.
13.
Coules
,
H. E.
,
Smith
,
D. J.
,
Venkata
,
K. A.
, and
Truman
,
C. E.
,
2014
, “
A Method for Reconstruction of Residual Stress Fields From Measurements Made in an Incompatible Region
,”
Int. J. Solids Struct.
,
51
(
10
), pp.
1980
1990
.
14.
Korsunsky
,
A. M.
,
Regino
,
G. M.
, and
Nowell
,
D.
,
2007
, “
Variational Eigenstrain Analysis of Residual Stresses in a Welded Plate
,”
Int. J. Solids Struct.
,
44
(
13
), pp.
4574
4591
.
15.
Jun
,
T.-S.
, and
Korsunsky
,
A. M.
,
2010
, “
Evaluation of Residual Stresses and Strains Using the Eigenstrain Reconstruction Method
,”
Int. J. Solids Struct.
,
47
(
13
), pp.
1678
1686
.
16.
Faghidian
,
S. A.
,
2014
, “
A Smoothed Inverse Eigenstrain Method for Reconstruction of the Regularized Residual Fields
,”
Int. J. Solids Struct.
,
51
(
25–26
), pp.
4427
4434
.
17.
Faghidian
,
S. A.
,
2015
, “
Inverse Determination of the Regularized Residual Stress and Eigenstrain Fields Due to Surface Peening
,”
J. Strain Anal. Eng. Des.
,
50
(
2
), pp.
84
91
.
18.
Farrahi
,
G. H.
,
Faghidian
,
S. A.
, and
Smith
,
D. J.
,
2010
, “
An Inverse Method for Reconstruction of the Residual Stress Field in Welded Plates
,”
ASME J. Pressure Vessel Technol.
,
132
(
6
), p.
061205
.
19.
Faghidian
,
S. A.
,
2015
, “
A Note on the Inverse Reconstruction of Residual Fields in Surface Peened Plates
,”
Lat. Am. J. Solids Struct.
,
12
(
12
), pp.
2351
2362
.
20.
Korsunsky
,
A. M.
,
2007
, “
Residual Elastic Strains in Autofrettaged Tubes: Elastic–Ideally Plastic Model Analysis
,”
ASME J. Eng. Mater. Technol.
,
129
(
1
), pp.
77
81
.
21.
Korsunsky
,
A. M.
, and
Regino
,
G. M.
,
2007
, “
Residual Elastic Strains in Autofrettaged Tubes: Variational Analysis by the Eigenstrain Finite Element Method
,”
ASME J. Appl. Mech.
,
74
(
4
), pp.
717
722
.
22.
Farrahi
,
G. H.
,
Faghidian
,
S. A.
, and
Smith
,
D. J.
,
2009
, “
Reconstruction of Residual Stresses in Autofrettaged Thick-Walled Tubes From Limited Measurements
,”
Int. J. Pressure Vessels Piping
,
86
(
11
), pp.
777
784
.
23.
Hoger
,
A.
,
1986
, “
On the Determination of Residual Stress in an Elastic Body
,”
J. Elasticity
,
16
(
3
), pp.
303
324
.
24.
Mura
,
T.
,
1987
,
Micromechanics of Defects in Solids
,
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
.
25.
Timoshenko
,
S. P.
, and
Goodier
,
J. N.
,
1970
,
Theory of Elasticity
,
3rd ed.
,
McGraw-Hill
,
New York
.
26.
Hill
,
R.
,
1950
,
The Mathematical Theory of Plasticity
,
Oxford University Press
,
New York
.
27.
Chakrabarty
,
J.
,
1987
,
Theory of Plasticity
,
McGraw-Hill
,
New York
.
28.
Rees
,
D. W. A.
,
1987
, “
A Theory of Autofrettage With Applications to Creep and Fatigue
,”
Int. J. Pressure Vessels Piping
,
30
(
1
), pp.
57
76
.
29.
Allaire
,
G.
and
Kaber
,
S. M.
,
2008
,
Numerical Linear Algebra
,
Springer
,
New York
.
You do not currently have access to this content.