The so-called “in-vessel retention (IVR)” is a severe accident management strategy, which is widely adopted in most advanced nuclear power plants. The IVR mitigation is assumed to be able to arrest the degraded melting core and maintain the structural integrity of reactor pressure vessel (RPV) within a prescribed hour. Essentially, the most dangerous thermal–mechanical loads can be specified as the combination of critical heat flux (CHF) and internal pressure. The CHF is the coolability limits of RPV submerged in water (∼150 °C) and heated internally (∼1327 °C), it results in a sudden transition of boiling crisis from nucleate to film boiling. Accordingly, from a structural integrity perspective, the RPV failure mechanisms span a wide range of structural behaviors, such as melt-through, creep damage, plastic deformation as well as thermal expansion. Furthermore, the geometric discontinuity of RPV created by the local material melting on the inside aggravates the stress concentration. In addition, the internal pressure effect that usually neglected in the traditional concept of IVR is found to be having a significant impact on the total damage evolution, as indicated in the Fukushima accident that a certain pressure (up to 8.0 MPa) still existed inside the RPV. This paper investigates structural behaviors of RPV with the effects of CHF and internal pressure. In achieving this goal, a continuum damage mechanics (CDM) based on the “ductility exhaustion” is adopted for the in-depth analysis.

References

References
1.
Yue
,
J.
,
Wei
,
X.
,
Liu
,
X. J.
, and
Cheng
,
X.
,
2015
, “
In- and Ex-Vessel Coupled Analysis of IVR-ERVC Phenomenon for Large Scale PWR
,”
Ann. Nucl. Energy
,
80
, pp.
322
337
.
2.
Schulz
,
T. L.
,
2006
, “
Westinghouse AP1000 Advanced Passive Plant
,”
Nucl. Eng. Des.
,
236
(
14–16
), pp.
1547
1557
.
3.
Mao
,
J. F.
,
Zhu
,
J. W.
,
Bao
,
S. Y.
,
Luo
,
L. J.
, and
Gao
,
Z. L.
,
2016
, “
Creep Deformation and Damage Behavior of Reactor Pressure Vessel Under Core Meltdown Scenario
,”
Int. J. Pressure Vessels Piping.
,
139–140
, pp.
107
116
.
4.
Mao
,
J. F.
,
Zhu
,
J. W.
,
Bao
,
S. Y.
,
Luo
,
L. J.
, and
Gao
,
Z. L.
,
2016
, “
Study on Structural Failure of RPV With Geometric Discontinuity Under Severe Accident
,”
Nucl. Eng. Des.
,
307
, pp.
354
363
.
5.
Willschutz
,
H. G.
,
Altstadt
,
E.
,
Sehgal
,
B. R.
, and
Weiss
,
F. P.
,
2003
, “
Simulation of Creep Tests With French or German RPV-Steel and Investigation of a RPV-Support Against Failure
,”
Ann. Nucl. Energy
,
30
(
10
), pp.
1033
1063
.
6.
Duijvestijn
,
G.
, and
Birchley
,
J.
,
1999
, “
Core Melt Down and Vessel Failure: A Coupled Problem
,”
Nucl. Eng. Des.
,
191
(
1
), pp.
17
30
.
7.
Zhang
,
Y. P.
,
Janne
,
W.
, and
Zhang
,
Y. Y.
,
2014
, “
Upper Limits to Americium Concentration in Large Sized Sodium-Cooled Fast Reactors Loaded With Metallic Fuel
,”
Ann. Nucl. Energy
,
70
, pp.
180
187
.
8.
Government of Japan
,
2011
, “
Report of the Japanese Government to the IAEA Ministerial Conference on Nuclear Safety—The Accident at TEPCO's Fukushima Nuclear Power Stations
,” Nuclear Emergency Response Headquarters, Vienna, Austria, Report No. 4.
9.
Jacques
,
D.
,
Claude
,
S. C.
, and
Christian
,
P.
,
1999
, “
CEA Program to Model the Failure of the Lower Head in Severe Accidents
,”
Nucl. Eng. Des.
,
191
(
1
), pp.
3
15
.
10.
Theofanous
,
T. G.
,
Liu
,
C.
,
Additon
,
S.
,
Angelini
,
S.
,
KymaHiinen
,
O.
, and
Salmassi
,
T.
,
1997
, “
In-Vessel Coolability and Retention of a Core Melt
,” Advanced Reactor Severe Accident Program, Department of Energy, Germantown Road, MD, Report No. DOE/ID-10460, pp.
41
55
.
11.
Park
,
R.-J.
,
Kang
,
K.-H.
,
Hong
,
S.-W.
, and
Kim
,
H.-Y.
,
2015
, “
Detailed Evaluation of Melt Pool Configuration in the Lower Plenum of the APR1400 Reactor Vessel During Severe Accidents
,”
Ann. Nucl. Energy
,
75
, pp.
476
482
.
12.
Willschutz
,
H.-G.
,
Altstadt
,
E.
,
Sehgal
,
B. R.
, and
Weiss
,
F.-P.
,
2006
, “
Recursively Coupled Thermal and Mechanical FEM-Analysis of Lower Plenum Creep Failure Experiments
,”
Ann. Nucl. Energy
,
33
(
2
), pp.
126
148
.
13.
Loktionov
,
V. D.
,
Mukhtarov
,
E. S.
,
Yaroshenko
,
N. I.
, and
Orlov
,
V. E.
,
1999
, “
Numerical Investigation of the Reactor Pressure Vessel Behaviour Under Severe Accident Conditions Taking Into Account the Combined Processes of the Vessel Creep and the Molten Pool Natural Convection
,”
Nucl. Eng. Des.
,
191
(
1
), pp.
31
52
.
14.
Willschutz
,
H.-G.
,
Altstadt
,
E.
,
Sehgal
,
B. R.
, and
Weiss
,
F.-P.
,
2001
, “
Coupled Thermal Structural Analysis of LWR Vessel Creep Failure Experiments
,”
Nucl. Eng. Des.
,
208
(
3
), pp.
265
282
.
15.
Vincent
,
K.
,
Florian
,
F.
, and
Willschuetz
,
H.-G.
,
2008
, “
Progress on PWR Lower Head Failure Predictive Models
,”
Nucl. Eng. Des.
,
238
(
9
), pp.
2420
2429
.
16.
Koundya
,
V.
, and
Cormeau
,
I.
,
2005
, “
Semi-Analytical Modeling of a PWR Lower Head Failure Under Severe Accident Conditions Using an Axisymetrical Shell Theory
,”
Nucl. Eng. Des.
,
235
(
8
), pp.
845
853
.
17.
Adroguer
,
B.
,
Chatelard
,
P.
, and
Van Dorsselaere
,
J. P.
,
2003
, “
Core Loss During a Severe Accident (COLOSS)
,”
Nucl. Eng. Des.
,
221
(
1–3
), pp.
55
76
.
18.
Gaus-Liu
,
X.
,
Miassoedov
,
A.
,
Cron
,
T.
, and
Wenz
,
T.
,
2010
, “
In-Vessel Melt Pool Coolability Test-Description and Results of LIVE Experiments
,”
Nucl. Eng. Des.
,
240
(
11
), pp.
3898
3903
.
19.
Buck
,
M.
,
Burger
,
M.
,
Godin-Jacqmin
,
L.
,
Tran
,
C. T.
, and
Chudanov
,
V.
,
2010
, “
The LIVE Program -Results of Test L1 and Joint Analyses on Transient Molten Pool Thermal Hydraulics
,”
Prog. Nucl. Energy
,
52
(
1
), pp.
46
60
.
20.
Bergheau
,
J.-M.
,
Devaux
,
J.
,
Mottet
,
G. R.
, and
Gilles
,
P.
,
2004
, “
Prediction of Creep Rupture of Pressure Vessels
,”
ASME J. Pressure Vessel Technol.
,
126
(
2
), pp.
163
168
.
21.
Beukelmann
,
D.
,
Guo
,
W.
,
Holzer
,
W.
,
Kauer
,
R.
,
Münch
,
W.
,
Reichel
,
C.
, and
Schöner
,
P.
,
2012
, “
Safety Assessment of Reactor Pressure Vessel Integrity for Loss of Coolant Accident Conditions
,”
ASME J. Pressure Vessel Technol.
,
134
(
1
), p.
011302
.
22.
Koundy
,
V.
,
Durin
,
M.
,
Nicolas
,
L.
, and
Combescure
,
A.
,
2005
, “
Simplified Modeling of a PWR Reactor Pressure Vessel Lower Head Failure in the Case of a Severe Accident
,”
Nucl. Eng. Des.
,
235
(
8
), pp.
835
843
.
23.
Nicolas
,
L.
,
Durin
,
M.
,
Koundy
,
V.
, and
Mathet
,
E.
,
2003
, “
Results of Benchmark Calculations Based on OLHF-1 Test
,”
Nucl. Eng. Des.
,
223
(
3
), pp.
263
277
.
24.
Mao
,
J. F.
,
Zhang
,
J. H.
,
Wang
,
W. Z.
, and
Liu
,
Y. Z.
,
2013
, “
Creep-Fatigue Life Prediction of Stop and Regulating Valves on the Intermediate-Pressure Section of a 1000MW Steam Turbine
,”
ASME
Paper No. GT2013-94167.
25.
Mao
,
J. F.
,
Tang
,
D.
,
Bao
,
S. Y.
,
Luo
,
L. J.
, and
Gao
,
Z. L.
,
2016
, “
High Temperature Strength and Multiaxial Fatigue Life Assessment of a Tubesheet Structure
,”
Eng. Failure Anal.
,
68
, pp.
10
21
.
You do not currently have access to this content.