The prediction of leakage is one of the most challenging tasks when designing bolted flanged connections and industrial valves. Failure of these pressure vessel components can cause shutdowns but also accidents, loss of revenue, and environmental damages. With the strict regulations on fugitive emissions and environmental protection laws new tightness-based standards and design methods are being adopted to improve the sealing performance of bolted joints and valves. In addition, there is a practical interest in using a reliable correlation that could predict leak rates of one fluid on the basis of tests carried out with another on compressed packings. The paper presents an innovative approach to accurately predict and correlate leak rates in porous braided packing rings. The approach is based on Darcy–Klinkenberg to which a modified effective diffusion term is added to the equation. Experimentally measured gas flow rates were performed on a set of graphite-based compression packing rings with a large range of leak rates under isothermal steady conditions. Leakage from three different gases namely helium, nitrogen, and argon were used to validate the developed correlation. In the presence of the statistical properties of porous packings, the leak rates for different gases can be predicted with reasonable accuracy.

References

References
1.
Knudsen
,
M.
,
1909
, “
The Law of the Molecular Flow and Viscosity of Gases Moving Through Tubes
,”
Ann. der Phys.
,
28
(
1
), pp.
75
130
.
2.
Muskat
,
M.
,
1937
,
The Flow of Homogeneous Fluids Through Porous Media
,
McGraw-Hill
,
New York
.
3.
Kundt
,
A.
, and
Warburg
,
E.
,
1875
, “
Ueber Reibung und Warmeleitung verdunnter Gase
,”
Ann. der Phys.
,
231
(
7
), pp.
337
365
, 525–550.
4.
Klinkenberg
,
L. J.
,
1941
, “
The Permeability of Porous Media to Liquid and Gases
,”
API
Drilling and Production Practice, API 11th Midyear Meeting
, Tulsa, OK, May 19–22, pp.
200
213
.
5.
Civan
,
F.
,
2010
, “
Effective Correlation of Apparent Gas Permeability in Tight Porous Media
,”
Transp. Porous Media
,
82
(
2
), pp.
375
384
.
6.
Ergun
,
S.
,
1952
, “
Fluid Flow Through Packed Columns
,”
J. Chem. Eng. Prog.
,
48
(
2
), pp.
89
94
.
7.
Forchheimer
,
P.
,
1901
, “
Wasserbewegung Durch Boden
” (“The Movement of Waters in the Earth”),
Z. Ver. Dtsch. Ingenieuer
,
45
(
1
), pp.
1782
1788
.
8.
Chor
,
V.
, and
Li
,
W.
,
2008
, “
A Permeability Measurement System for Tissue Engineering Scaffolds
,”
Meas. Sci. Technol.
,
18
(
1
), pp.
208
216
.
9.
Sun
,
H.
,
Yao
,
J.
,
Fan
,
D.
,
Wang
,
C.
, and
Sun
,
Z.
,
2015
, “
Gas Transport Mode Criteria in Ultra-Tight Porous Media
,”
Int. J. Heat Mass Transfer
,
83
, pp.
192
199
.
10.
Zschiegner
,
S.
,
Russ
,
S.
,
Bunde
,
A.
, and
Karger
,
J.
,
2007
, “
Pore Opening Effects and Transport Diffusion in the Knudsen Regime in Comparison to Self-(or Tracer) Diffusion
,”
EPL
,
78
(
2
), p.
20001
.
11.
Huizenga
,
D. G.
, and
Smith
,
D. M.
,
1986
, “
Knudsen Diffusion in Random Assemblages of Uniform Spheres
,”
AlChE J.
,
32
(
1
), pp.
1
6
.
12.
Gao
,
X.
,
Diniz da Costa
,
J.
, and
Bhatia
,
S.
,
2014
, “
Understanding the Diffusion Tortuosity of Porous Materials: An Effective Medium Theory Perspective
,”
Chem. Eng. Sci.
,
110
, pp.
55
71
.
13.
Lito
,
P. F.
,
Cardoso
,
S. P.
,
Rodrigues
,
A. E.
, and
Silva
,
C. M.
,
2015
, “
Kinetic Modeling of Pure and Multicomponent Gas Permeation Through Microporous Membranes: Diffusion Mechanisms and Influence of Isotherm Types
,”
Sep. Purif. Rev.
,
44
(
4
), pp.
283
307
.
14.
Shou
,
D.
,
Fan
,
J.
, and
Mei
,
M.
,
2014
, “
An Analytical Model for Gas Diffusion Though Nanoscale and Microscale Fibrous Media
,”
Microfluid. Nanofluid.
,
16
(
1
), pp.
381
389
.
15.
Carrigy
,
N. B.
,
Pant
,
L. M.
,
Mitra
,
S.
, and
Secanell
,
M.
,
2013
, “
Knudsen Diffusivity and Permeability of PEMFC Microporous Coated Gas Diffusion Layers for Different Polytetrafluoroethylene Loadings
,”
J. Electrochem. Soc.
,
160
(
2
), pp.
F81
F89
.
16.
Javadpour
,
F.
,
Fisher
,
D.
, and
Unsworth
,
M.
,
2007
, “
Nano Scale Gas Flow in Shale Gas Sediments
,”
J. Can. Pet. Technol.
,
46
(
10
), pp.
55
61
.
17.
Beskok
,
A.
, and
Karniadakis
,
G.
,
1999
, “
A Model for Flows in Channels, Pipes, and Ducts at Micro and Nano Scales
,”
Microscale Thermophys. Eng.
,
3
(
1
), pp.
43
77
.
18.
Loyalka
,
S. K.
, and
Hamoodi
,
S. A.
,
1990
, “
Poiseuille Flow of a Rarefied Gas in a Cylindrical Tube: Solution of Linearized Boltzmann Equation
,”
Phys. Fluids
,
A2
(
11
), pp.
2061
2065
.
19.
Tison
,
S. A.
, and
Tilford
,
C. R.
,
1993
, “
Low Density Water Vapor Measurements
,” The NIST Primary Standard and Instrument Response, NIST Internal Report No. 5241.
20.
Plampin
,
M.
,
Illangasekare
,
T.
,
Sakaki
,
T.
, and
Pawar
,
R.
,
2014
, “
Experimental Study of Gas Evolution in Heterogeneous Shallow Subsurface Formations During Leakage of Stored CO2
,”
Int. J. Greenhouse Gas Control
,
22
, pp.
47
62
.
21.
Wang
,
G.
,
Ren
,
T.
,
Wang
,
K.
, and
Zhou
,
A.
,
2014
, “
Improved Apparent Permeability Models of Gas Flow in Coal With Klinkenber Effect
,”
Fuel
,
128
, pp.
53
61
.
22.
Khoei
,
A. R.
, and
Vahab
,
M.
,
2014
, “
A Numerical Contact Algorithm in Saturated Porous Media With the Extended Finite Element Method
,”
Comput. Mech.
,
54
(
5
), pp.
1089
1110
.
23.
Ma
,
J.
,
Sanchez
,
J. P.
,
Wu
,
K.
,
Couples
,
G. D.
, and
Jiang
,
Z.
,
2014
, “
A Pore Network Model for Simulating Non-Ideal Gas Flow in Micro- and Nano-Porous Materials
,”
Fuel
,
116
, pp.
498
508
.
24.
Hooman
,
K.
,
Tamayol
,
A.
,
Dahari
,
M.
,
Safaei
,
M. R.
,
Togun
,
H.
, and
Sadri
,
R.
,
2014
, “
A Theoretical Model to Predict Gas Permeability for Slip Flow Through a Porous Medium
,”
Appl. Therm. Eng.
,
70
(
1
), pp.
71
76
.
25.
Anez
,
L.
,
Calas-Etienne
,
S.
,
Primera
,
J.
, and
Woignier
,
T.
,
2014
, “
Gas and Liquid Permeability in Nano Composites Gels: Comparison of Knudsen and Klinkenberg Correction Factors
,”
Microporous Mesoporous Mater.
,
200
, pp.
79
85
.
26.
Schaaf
,
M.
, and
Schoeckle
,
F.
,
2009
, “
Technical Approach for the Reduction of Fugitive Emissions
,”
ASME
Paper No. PVP2009-78125.
27.
ANSI/ISA
,
1999
, “
Standard Method for the Evaluation of External leakage of Manual and Automated On-Off Valves
,” American National Standards Institute, Washington, DC, Standard No. ANSI/ISA-93.00.0.
28.
API
,
2011
, “
Type Testing of Process Valve Packing for Fugitive Emissions
,” American Petroleum Institute, Washington, DC, Standard No. API-622.
29.
API
,
2011
, “
Type Testing of Rising Stem Valves Equipped With Flexible Graphite Packing for Fugitive Emissions
,” American Petroleum Institute, Washington, D.C., Standard No. API-624.
30.
ISO
,
2006
, “
Industrial Valves—Measurement, Test and Qualification Procedure for Fugitive Emissions—Part1: Classification System and Qualification Procedures for Type Testing of Valves
,” International Standards Organization, Brussels, Belgium, Standard No.
ISO
-15848-1.
31.
Masi
,
V.
,
Bouzid
,
A. H.
, and
Derenne
,
M.
,
1998
, “
Correlation Between Gases and Mass Leak Rate of Gasketing Materials
,” 1998 ASME/JSME PVP Conference: Analysis of Bolted Joints, San Diego, CA, July 26–30, Vol. 367, pp.
17
24
.
32.
Jolly
,
P.
, and
Marchand
,
L.
,
2009
, “
Leakage Predictions for Static Gasket Based on Porous Media Theory
,”
ASME J. Pressure Vessel Technol.
,
131
(
2
), p.
021203
.
33.
Grine
,
L.
, and
Bouzid
,
A.
,
2011
, “
Correlation of Gaseous Mass Leak Rates Through Micro and Nano-Porous Gaskets
,”
ASME J. Pressure Vessel Technol.
,
133
(
2
), p.
021402
.
34.
Lasseux
,
D.
,
Jolly
,
P.
,
Jannot
,
Y.
, and
Omnes
,
E. S. B.
,
2011
, “
Permeability Measurement of Graphite Compression Packings
,”
ASME J. Pressure Vessel Technol.
,
133
(
4
), p.
041401
.
35.
Xiao
,
J. R.
, and
Wei
,
J.
,
1992
, “
Diffusion Mechanism of Hydrocarbons in Zeolites Theory
,”
Chem. Eng. Sci.
,
47
(
5
), pp.
1123
1141
.
36.
Wang
,
C. T.
, and
Smith
,
J. M.
,
1983
, “
Tortuosity Factors for Diffusion in Catalyst pellets
,”
AlChE J.
,
29
(
1
), pp.
132
136
,
37.
Burggraaf
,
A. J.
, and
Cot
,
L.
,
1996
,
Fundamentals of Inorganic Membranes Science and Technology
,
Elsevier
,
Amsterdam, The Netherlands
.
38.
Ruthven
,
D. M.
,
1984
,
Principles of Adsorption and Adsorption Processes
,
Wiley
,
New York
.
39.
Arghavani
,
J.
,
Derenne
,
M.
, and
Marchand
,
L.
,
2003
, “
Effect of Surface Characteristics on Compressive Stress and Leakage Rate in Gasketed Flanged Joints
,”
Int. J. Adv. Manuf. Technol.
,
21
(
10
), pp.
713
732
.
40.
Chastanet
,
J.
,
Royer
,
P.
, and
Auriault
,
L.
,
2004
, “
Does Klinkenberg's Law Survive Upscaling?
,”
Transp. Porous Media
,
56
(
2
), pp.
171
198
.
41.
Karniadakis
,
G.
,
Beskok
,
A.
, and
Aluru
,
N.
,
2000
,
Microflows and Nanoflows, Fundamentals and Simulation
,
Springer
,
New York
.
You do not currently have access to this content.