Dissimilar welding between carbon steel and stainless steel is widely used in power plant. A lot of stress corrosion cracking (SCC) have occurred in the weld joint, which are affected greatly by residual stresses. This paper presents a study of residual stress in a dissimilar weld between 0Cr18Ni9 steel and 20 low carbon steel with Inconel 182 weld metal, by using neutron diffraction, X-ray diffraction measurement and finite-element method (FEM). The residual stresses show asymmetric distribution due to the dissimilar materials. The maximum longitudinal (1.92ReL304) and transverse stresses (1.07ReL304) are presented in the weld metal and heat effected zone of 20 carbon steel, respectively. Through the thickness of weld metal, the average longitudinal stress is around 370 MPa. The weld root has a stress concentration, and the stresses near the weld root in the 20 steel are larger than those in 0Cr18Ni9 steel, making the weld root become the most risk zone for SCC. With the increase of heat input, the residual stress and plastic deformation around the weld root increase. Hence, low heat input is recommended for the welding between 0Cr18Ni9 steel and 20 carbon steel.

References

References
1.
Hou
,
J.
,
Peng
,
Q.
,
Takeda
,
Y.
,
Kuniya
,
J.
, and
Shoji
,
T.
,
2010
, “
Microstructure and Stress Corrosion Cracking of the Fusion Boundary Region in an Alloy 182-A533B Low Alloy Steel Dissimilar Weld Joint
,”
Corros. Sci.
,
52
(
12
), pp.
3949
3954
.
2.
Zhiming
,
L.
,
Laimin
,
S.
,
Shenjin
,
Z.
,
Zhidong
,
T.
, and
Yazhou
,
J.
,
2015
, “
Effect of High Energy Shot Peening Pressure on the Stress Corrosion Cracking of the Weld Joint of 304 Austenitic Stainless Steel
,”
Mater. Sci. Eng. A
,
637
, pp.
170
174
.
3.
Zhai
,
Z.
,
Abe
,
H.
,
Miyahara
,
Y.
, and
Watanabe
,
Y.
,
2015
, “
Effects of Phosphorus Segregation on Stress Corrosion Cracking in the Heat-Affected Zone of a Dissimilar Weld Joint Between a Ni-Base Alloy and a Low Alloy Steel
,”
Corros. Sci.
,
92
, pp.
32
42
.
4.
Mochizuki
,
M.
,
2007
, “
Control of Welding Residual Stress for Ensuring Integrity Against Fatigue and Stress-Corrosion Cracking
,”
Nucl. Eng. Des.
,
237
(
2
), pp.
107
123
.
5.
Xu
,
S.
, and
Wang
,
W.
,
2013
, “
Numerical Investigation on Weld Residual Stresses in Tube to Tube Sheet Joint of a Heat Exchanger
,”
Int. J. Pressure Vessels Piping
,
101
, pp.
37
44
.
6.
Yeh
,
T.-K.
,
Huang
,
G.-R.
,
Wang
,
M.-Y.
, and
Tsai
,
C.-H.
,
2013
, “
Stress Corrosion Cracking in Dissimilar Metal Welds With 304L Stainless Steel and Alloy 82 in High Temperature Water
,”
Prog. Nucl. Energy
,
63
, pp.
7
11
.
7.
Joseph
,
A.
,
Rai
,
S. K.
,
Jayakumar
,
T.
, and
Murugan
,
N.
,
2005
, “
Evaluation Of Residual Stresses In Dissimilar Weld Joints
,”
Int. J. Pressure Vessels Piping
,
82
(
9
), pp.
700
705
.
8.
Woo
,
W.
,
Em
,
V.
,
Hubbard
,
C. R.
,
Lee
,
H.-J.
, and
Park
,
K. S.
,
2011
, “
Residual Stress Determination in a Dissimilar Weld Overlay Pipe by Neutron Diffraction
,”
Mater. Sci. Eng. A
,
528
(
27
), pp.
8021
8027
.
9.
Yaghi
,
A. H.
,
Hyde
,
T. H.
,
Becker
,
A. A.
, and
Sun
,
W.
,
2013
, “
Finite Element Simulation of Residual Stresses Induced by the Dissimilar Welding of a P92 Steel Pipe With Weld Metal IN625
,”
Int. J. Pressure Vessels Piping
,
111–112
, pp.
173
186
.
10.
Gou
,
R.
,
Zhang
,
Y.
,
Xu
,
X.
,
Sun
,
L.
, and
Yang
,
Y.
,
2011
, “
Residual Stress Measurement of New and In-Service X70 Pipelines by X-Ray Diffraction Method
,”
NDT & E Int.
,
44
(
5
), pp.
387
393
.
11.
Murugan
,
S.
,
Rai
,
S. K.
,
Kumar
,
P. V.
,
Jayakumar
,
T.
,
Raj
,
B.
, and
Bose
,
M. S. C.
,
2001
, “
Temperature Distribution and Residual Stresses Due to Multipass Welding in Type 304 Stainless Steel and Low Carbon Steel Weld Pads
,”
Int. J. Pressure Vessels Piping
,
78
(
4
), pp.
307
317
.
12.
Sathish
,
S.
,
Moran
,
T. J.
,
Martin
,
R. W.
, and
Reibel
,
R.
,
2005
, “
Residual Stress Measurement With Focused Acoustic Waves and Direct Comparison With X-Ray Diffraction Stress Measurements
,”
Mater. Sci. Eng. A
,
399
(
1–2
), pp.
84
91
.
13.
Woo
,
W.
,
An
,
G. B.
,
Kingston
,
E. J.
,
DeWald
,
A. T.
,
Smith
,
D. J.
, and
Hill
,
M. R.
,
2013
, “
Through-Thickness Distributions of Residual Stresses in Two Extreme Heat-Input Thick Welds: A Neutron Diffraction, Contour Method and Deep Hole Drilling Study
,”
Acta Mater.
,
61
(
10
), pp.
3564
3574
.
14.
Muránsky
,
O.
,
Smith
,
M. C.
,
Bendeich
,
P. J.
,
Holden
,
T. M.
,
Luzin
,
V.
,
Martins
,
R. V.
, and
Edwards
,
L.
,
2012
, “
Comprehensive Numerical Analysis of a Three-Pass Bead-in-Slot Weld and Its Critical Validation Using Neutron and Synchrotron Diffraction Residual Stress Measurements
,”
Int. J. Solids Struct.
,
49
(
9
), pp.
1045
1062
.
15.
Haigh
,
R. D.
,
Hutchings
,
M. T.
,
James
,
J. A.
,
Ganguly
,
S.
,
Mizuno
,
R.
,
Ogawa
,
K.
,
Okido
,
S.
,
Paradowska
,
A. M.
, and
Fitzpatrick
,
M. E.
,
2013
, “
Neutron Diffraction Residual Stress Measurements on Girth-Welded 304 Stainless Steel Pipes With Weld Metal Deposited up to Half and Full Pipe Wall Thickness
,”
Int. J. Pressure Vessels Piping
,
101
, pp.
1
11
.
16.
Song
,
S.
,
Dong
,
P.
, and
Pei
,
X.
,
2015
, “
A Full-Field Residual Stress Estimation Scheme for Fitness-For-Service Assessment of Pipe Girth Welds: Part I-Identification of Key Parameters
,”
Int. J. Pressure Vessels Piping
,
126–127
, pp.
58
70
.
17.
Smith
,
M. C.
,
Smith
,
A. C.
,
Wimpory
,
R.
, and
Ohms
,
C.
,
2014
, “
A Review of the NeT Task Group 1 Residual Stress Measurement and Analysis Round Robin on a Single Weld Bead-on-Plate Specimen
,”
Int. J. Pressure Vessels Piping
,
120–121
, pp.
93
140
.
18.
Xu
,
S.
,
Wei
,
R.
,
Wang
,
W.
, and
Chen
,
X.
,
2014
, “
Residual Stresses in the Welding Joint of the Nozzle-to-Head Area of a Layered High-Pressure Hydrogen Storage Tank
,”
Int. J. Hydrogen Energy
,
39
(
21
), pp.
11061
11070
.
19.
Yaghi
,
A.
,
Hyde
,
T. H.
,
Becker
,
A. A.
,
Sun
,
W.
, and
Williams
,
J. A.
,
2006
, “
Residual Stress Simulation in Thin and Thick-Walled Stainless Steel Pipewelds Including Pipe Diameter Effects
,”
Int. J. Pressure Vessels Piping
,
83
(
11–12
), pp.
864
874
.
20.
Deng
,
D.
,
Ogawa
,
K.
,
Kiyoshima
,
S.
,
Yanagida
,
N.
, and
Saito
,
K.
,
2009
, “
Prediction of Residual Stresses in a Dissimilar Metal Welded Pipe With Considering Cladding, Buttering and Post Weld Heat Treatment
,”
Comput. Mater. Sci.
,
47
(
2
), pp.
398
408
.
21.
Skouras
,
A.
,
Flewitt
,
P. E. J.
,
Peel
,
M.
, and
Pavier
,
M. J.
,
2014
, “
Residual Stress Measurements in a P92 Steel-In625 Superalloy Metal Weldment in the As-Welded and After Post Weld Heat Treated Conditions
,”
Int. J. Pressure Vessels Piping
,
123–124
, pp.
10
18
.
22.
Zhao
,
L.
,
Liang
,
J.
,
Zhong
,
Q.
,
Yang
,
C.
,
Sun
,
B.
, and
Du
,
J.
,
2014
, “
Numerical Simulation on the Effect of Welding Parameters on Welding Residual Stresses in T92/S30432 Dissimilar Welded Pipe
,”
Adv. Eng. Software
,
68
, pp.
70
79
.
23.
Lee
,
C.
, and
Chang
,
K.
,
2012
, “
Temperature Fields and Residual Stress Distributions in Dissimilar Steel Butt Welds Between Carbon and Stainless Steels
,”
Appl. Therm. Eng.
,
45–46
, pp.
33
41
.
24.
Chin-Hyung
,
L.
, and
Kyong-Ho
,
C.
,
2007
, “
Numerical Analysis of Residual Stresses in Welds of Similar or Dissimilar Steel Weldments Under Superimposed Tensile Loads
,”
Comput. Mater. Sci.
,
40
(4), pp.
548
556
.
25.
Akbari
,
D.
, and
Sattari-Far
,
I.
,
2009
, “
Effect of the Welding Heat Input on Residual Stresses in Butt-Welds of Dissimilar Pipe Joints
,”
Int. J. Pressure Vessels Piping
,
86
(
11
), pp.
769
776
.
26.
GB7704-2008
,
2008
, “
Non-Destructive Testing Practice for Residual Stress Measurement by X-Ray
,”
China Standard Press
,
Beijing
.
27.
Goldak
,
K.
,
Chakaravarti
,
A.
, and
Bibby
,
M.
,
1984
, “
A New Finite Element Model for Welding Heat Sources
,”
Metall. Mater. Trans. B
,
15
(
2
), pp.
299
305
.
28.
Jiang
,
W.
,
Luo
,
Y.
,
Wang
,
B. Y.
,
Tu
,
S. T.
, and
Gong
,
J. M.
,
2014
, “
Residual Stress Reduction in the Penetration Nozzle Weld Joint by Overlay Welding
,”
Mater. Des.
,
60
, pp.
443
450
.
29.
Wenchun
,
J.
,
Zibai
,
L.
,
Gong
,
J. M.
, and
Tu
,
S. T.
,
2010
, “
Numerical Simulation to Study the Effect of Repair Width on Residual Stresses of a Stainless Steel Clad Plate
,”
Int. J. Pressure Vessels Piping
,
87
(
8
), pp.
457
463
.
30.
Muránsky
,
O.
,
Smith
,
M. C.
,
Bendeich
,
P. J.
, and
Edwards
,
L.
,
2011
, “
Validated Numerical Analysis of Residual Stresses in Safety Relief Valve (SRV) Nozzle Mock-Ups
,”
Comput. Mater. Sci.
,
50
(
7
), pp.
2203
2215
.
31.
Zhenggang
,
Y.
,
Yong
,
J.
,
Jianming
,
G.
,
Shandong
,
T.
,
Ruisong
,
Z.
, and
Dongxing
,
X.
,
2009
, “
Numerical Simulation Analysis of Welding Residual Stress on Dissimilar Metal Welded Pipes
,”
Trans. China Weld. Inst.
,
30
(
8
), pp.
69
72
.
32.
Sireesha
,
M.
,
Albert
,
S. K.
,
Shankar
,
V.
, and
Sundaresan
,
S.
,
2000
, “
A Comparative Evaluation of Welding Consumables for Dissimilar Welds Between 316LN Austenitic Stainless Steel and Alloy 800
,”
J. Nucl. Mater.
,
279
(
1
), pp.
65
76
.
33.
Adrover
,
A.
,
Giona
,
M.
,
Capobianco
,
L.
,
Tripodi
,
P.
, and
Violante
,
V.
,
2003
, “
Stress-Induced Diffusion of Hydrogen in Metallic Membranes: Cylindrical vs. Planar Formulation
,”
J. Alloys Compd.
,
358
(
1–2
), pp.
268
280
.
34.
Yongkui
,
L.
,
Kaji
,
Y.
, and
Igarashi
,
T.
,
2012
, “
Effects of Thermal Load and Cooling Condition on Weld Residual Stress in a Core Shroud With Numerical Simulation
,”
Nucl. Eng. Des.
,
242
, pp.
100
107
.
35.
Lee
,
C.-H.
, and
Chang
,
K.-H.
,
2007
, “
Numerical Analysis of Residual Stresses in Welds of Similar or Dissimilar Steel Weldments Under Superimposed Tensile Loads
,”
Comput. Mater. Sci.
,
40
(
4
), pp.
548
556
.
You do not currently have access to this content.