Fillet weld joint is widely used in engineering structures, but a lot of failures have been generated in the fillet joint affected greatly by weld residual stress, and it is very important to decrease the residual stress. Therefore, this paper proposes a new method using overlay welding and cutting (OWC) to reduce the residual stress in the fillet weld. First, the overlay welding is applied on the root surface of fillet weld, and then the overlaid metal is removed again by cutting. In order to verify this method, a thermal-elasto-plastic analysis method, using finite-element analysis (FEA) techniques, is developed to evaluate the residual stress change during the process of OWC. The impact indention measurement is also used to measure the surface residual stress. The results of FEA were compared with experimental data to confirm the accuracy of the developed finite-element method (FEM). In order to provide a guideline for design, the dimension effects including overlay weld width and height on residual stress have been investigated. It finds that OWC can decrease 25–40% of the as-weld residual stress, and increasing the overlay width and height is helpful to decrease the residual stress, which provides a reference for the reduction of residual stress in the fillet weld.

References

References
1.
Dong
,
P.
, and
Brust
,
F. W.
,
2000
, “
Welding Residual Stresses and Effects on Fracture in Pressure Vessel and Piping Components: A Millennium Review and Beyond
,”
ASME J. Pressure Vessel Technol.
,
122
(
3
), pp.
329
338
.
2.
Leggatt
,
R. H.
,
2008
, “
Residual Stresses in Welded Structures
,”
Int. J. Pressure Vessels Piping
,
85
(
3
), pp.
144
151
.
3.
Jiang
,
W.
,
Luo
,
Y.
,
Wang
,
B.
,
Woo
,
W.
, and
Tu
,
S. T.
,
2014
, “
Neutron Diffraction Measurement and Numerical Simulation to Study the Effect of Repair Depth on Residual Stress in 316L Stainless Steel Repair Weld
,”
ASME J. Pressure Vessel Technol.
,
137
(
4
), p.
041406
.
4.
Khurshid
,
M.
,
Barsoum
,
Z.
, and
Mumtaz
,
N. A.
,
2012
, “
Ultimate Strength and Failure Modes for Fillet Welds in High Strength Steels
,”
Mater. Des.
,
40
, pp.
36
42
.
5.
Xu
,
S.
, and
Zhao
,
Y.
,
2013
, “
Using FEM to Determine the Thermo-Mechanical Stress in Tube to Tube-Sheet Joint for the SCC Failure Analysis
,”
Eng. Failure Anal.
,
34
, pp.
24
34
.
6.
Xu
,
S.
,
Wang
,
W.
, and
Chang
,
Y.
,
2014
, “
Using FEM to Predict Residual Stresses in Girth Welding Joint of Layered Cylindrical Vessels
,”
Int. J. Pressure Vessels Piping
,
119
, pp.
1
7
.
7.
Cho
,
J. R.
,
Lee
,
B. Y.
,
Moon
,
Y. H.
, and
Van Tyne
,
C. J.
,
2004
, “
Investigation of Residual Stress and Post Weld Heat Treatment of Multi-Pass Welds by Finite Element Method and Experiments
,”
J. Mater. Process. Technol.
,
155
, pp.
1690
1695
.
8.
Altenkirch
,
J.
,
Steuwer
,
A.
,
Peel
,
M.
,
Richards
,
D. G.
, and
Withers
,
P. J.
,
2008
, “
The Effect of Tensioning and Sectioning on Residual Stresses in Aluminium AA7749 Friction Stir Welds
,”
Mater. Sci. Eng.: A
,
488
(
1
), pp.
16
24
.
9.
Karabin
,
M. E.
,
Barlat
,
F.
, and
Becker
,
R.
,
2003
, “
A Simplified Analysis of the Effect of Microstructure Gradient on the Stress Relief of Aluminum Plates and Extrusions
,”
Int. J. Mech. Sci.
,
45
(
9
), pp.
1483
1503
.
10.
Jiang
,
W.
,
Zhang
,
Y.
, and
Woo
,
W.
,
2012
, “
Using Heat Sink Technology to Decrease Residual Stress in 316L Stainless Steel Welding Joint: Finite Element Simulation
,”
Int. J. Pressure Vessels Piping
,
92
, pp.
56
62
.
11.
Mochizuki
,
M.
,
2007
, “
Control of Welding Residual Stress for Ensuring Integrity Against Fatigue and Stress–Corrosion Cracking
,”
Nucl. Eng. Des.
,
237
(
2
), pp.
107
123
.
12.
Jiang
,
W.
,
Luo
,
Y.
,
Wang
,
B. Y.
,
Tu
,
S. T.
, and
Gong
,
J. M.
,
2014
, “
Residual Stress Reduction in the Penetration Nozzle Weld Joint by Overlay Welding
,”
Mater. Des.
,
60
, pp.
443
450
.
13.
Jiang
,
W.
,
Woo
,
W.
,
An
,
G.-B.
, and
Park
,
J.-U.
,
2013
, “
Neutron Diffraction and Finite Element Modeling to Study the Weld Residual Stress Relaxation Induced by Cutting
,”
Mater. Des.
,
51
, pp.
415
420
.
14.
Teng
,
T.-L.
,
Fung
,
C.-P.
,
Chang
,
P.-H.
, and
Yang
,
W.-C.
,
2001
, “
Analysis of Residual Stresses and Distortions in T-Joint Fillet Welds
,”
Int. J. Pressure Vessels Piping
,
78
(
8
), pp.
523
538
.
15.
Perić
,
M.
,
Tonković
,
Z.
,
Rodić
,
A.
,
Surjak
,
M.
,
Garašić
,
I.
,
Boras
,
I.
, and
Švaić
,
S.
,
2014
, “
Numerical Analysis and Experimental Investigation of Welding Residual Stresses and Distortions in a T-Joint Fillet Weld
,”
Mater. Des.
,
53
, pp.
1052
1063
.
16.
Barsoum
,
Z.
, and
Lundbäck
,
A.
,
2009
, “
Simplified FE Welding Simulation of Fillet Welds-3D Effects on the Formation Residual Stresses
,”
Eng. Failure Anal.
,
16
(
7
), pp.
2281
2289
.
17.
Vakili-Tahami
,
F.
, and
Ziaei-Asl
,
A.
,
2013
, “
Numerical and Experimental Investigation of T-Shape Fillet Welding of AISI 304 Stainless Steel Plates
,”
Mater. Des.
,
47
, pp.
615
623
.
18.
Lin
,
Q.
,
Chen
,
H.
,
Chen
,
J.
, and
Liang
,
Y.
,
2005
, “
Residual Stresses Measurement Using an Indentation Made by an Impact Load
,”
Mater. Sci. Forum
,
490–491
, pp.
196
201
.
19.
Goldak
,
K.
,
Chakaravarti
,
A.
, and
Bibby
,
M.
,
1984
, “
A New Finite Element Model for Welding Heat Sources
,”
Metall. Mater. Trans. B
,
15
(
2
), pp.
299
305
.
20.
Lee
,
C.-H.
,
Chang
,
K.-H.
, and
Park
,
J.-U.
,
2013
, “
Three-Dimensional Finite Element Analysis of Residual Stresses in Dissimilar Steel Pipe Welds
,”
Nucl. Eng. Des.
,
256
, pp.
160
168
.
21.
Smith
,
M. C.
,
Bouchard
,
P. J.
,
Turski
,
M.
,
Edwards
,
L.
, and
Dennis
,
R. J.
,
2012
, “
Accurate Prediction of Residual Stress in Stainless Steel Welds
,”
Comput. Mater. Sci.
,
54
, pp.
312
328
.
22.
Muránsky
,
O.
,
Hamelin
,
C. J.
,
Smith
,
M. C.
,
Bendeich
,
P. J.
, and
Edwards
,
L.
,
2012
, “
The Effect of Plasticity Theory on Predicted Residual Stress Fields in Numerical Weld Analyses
,”
Comput. Mater. Sci.
,
54
, pp.
125
134
.
23.
Olabi
,
A. G.
, and
Hashmi
,
M. S. J.
,
1995
, “
The Effect of Post-Weld Heat-Treatment on Mechanical-Properties and Residual-Stresses Mapping in Welded Structural Steel
,”
J. Mater. Process. Technol.
,
55
(
2
), pp.
117
122
.
24.
Prime
,
M. B.
,
Thomas
,
G. H.
, and
Baumann
,
J. A.
,
2006
, “
Residual Stress Measurements in a Thick, Dissimilar Aluminum Alloy Friction Stir Weld
,”
Acta Mater.
,
54
(
15
), pp.
4013
4021
.
25.
Sridhar
,
B. R.
,
Devanda
,
G.
, and
Ramachandra
,
K.
,
2003
, “
Effect of Machining Parameters and Heat Treatment on the Residual Stress Distribution in Titanium Alloy IMI-834
,”
J. Mater. Process. Technol.
,
139
(
1–3
), pp.
628
634
.
You do not currently have access to this content.