In this article, the nonlinear bending behavior of functionally graded (FG) curved (cylindrical, hyperbolic, and elliptical) panel is investigated under combined thermomechanical loading. In this study, two temperature fields (uniform and linear) across the thickness of shell panel are considered. The panel model is developed mathematically using higher-order shear deformation midplane kinematics with Green–Lagrange-type nonlinear strains. The individual constituents of functionally graded material (FGM) are assumed to be temperature-dependent (TD) and graded continuously using the power-law distribution. The effective material properties of FG shell panel are evaluated based on Voigt's micromechanical model. The governing equation of the panel structure is obtained using the variational principle and discretized through suitable finite-element (FE) steps. A direct iterative method is employed to compute the desired responses of the curved panel structure. The efficacy of the present nonlinear model has been shown by comparing the responses with those available published literature and commercial FE tool ansys. Finally, the model has been extended to examine the effect of various parameters (volume fractions, temperature, thickness ratios, curvature ratios, aspect ratios, and support conditions) on the nonlinear bending behavior of curved FG panel by solving wide variety of numerical illustrations.

References

References
1.
Alijani
,
F.
, and
Amabili
,
M.
,
2014
, “
Non-Linear Vibrations of Shells: A Literature Review From 2003 to 2013
,”
Int. J. Nonlinear Mech.
,
58
, pp.
233
257
.
2.
Jha
,
D. K.
,
Kant
,
T.
, and
Singh
,
R. K.
,
2013
, “
A Critical Review of Recent Research on Functionally Graded Plates
,”
Compos. Struct.
,
96
, pp.
833
849
.
3.
Liew
,
K. M.
,
Zhao
,
X.
, and
Ferreira
,
A. J. M.
,
2011
, “
A Review of Meshless Methods for Laminated and Functionally Graded Plates and Shells
,”
Compos. Struct.
,
93
(
8
), pp.
2031
2041
.
4.
Tornabene
,
F.
, and
Reddy
,
J. N.
,
2013
, “
FGM and Laminated Doubly-Curved and Degenerate Shells Resting on Nonlinear Elastic Foundations: A GDQ Solution for Static Analysis With a Posteriori Stress and Strain Recovery
,”
J. Indian Inst. Sci.
,
93
, pp.
635
688
.
5.
Hong
,
C. C.
,
2014
, “
Thermal Vibration of Magnetostrictive Functionally Graded Material Shells by Considering the Varied Effects of Shear Correction Coefficient
,”
Int. J. Mech. Sci.
,
85
, pp.
20
29
.
6.
Tornabene
,
F.
,
Fantuzzi
,
N.
, and
Bacciocchi
,
M.
,
2014
, “
Free Vibrations of Free-Form Doubly-Curved Shells Made of Functionally Graded Materials Using Higher-Order Equivalent Single Layer Theories
,”
Compos. Part B: Eng.
,
67
, pp.
490
509
.
7.
Xiang
,
S.
, and
Kang
,
G.
,
2013
, “
A nth-Order Shear Deformation Theory for the Bending Analysis on the Functionally Graded Plates
,”
Eur. J. Mech. A: Solids
,
37
, pp.
336
343
.
8.
Thai
,
H. T.
, and
Choi
,
D. H.
,
2013
, “
A Simple First-Order Shear Deformation Theory for the Bending and Free Vibration Analysis of Functionally Graded Plates
,”
Compos. Struct.
,
101
, pp.
332
340
.
9.
Thai
,
H. T.
, and
Kim
,
S. E.
,
2013
, “
A Simple Higher-Order Shear Deformation Theory for Bending and Free Vibration Analysis of Functionally Graded Plates
,”
Compos. Struct.
,
96
, pp.
165
173
.
10.
Talha
,
M.
, and
Singh
,
B. N.
,
2010
, “
Static Response and Free Vibration Analysis of FGM Plates Using Higher Order Shear Deformation Theory
,”
Appl. Math. Modell.
,
34
(
12
), pp.
3991
4011
.
11.
Santos
,
H.
,
Soares
,
C. M. M.
,
Soares
,
C. A. M.
, and
Reddy
,
J. N.
,
2009
, “
A Semi-Analytical Finite Element Model for the Analysis of Cylindrical Shells Made of Functionally Graded Materials
,”
Compos. Struct.
,
91
(
4
), pp.
427
432
.
12.
Shen
,
H. S.
,
2002
, “
Nonlinear Bending Response of Functionally Graded Plates Subjected to Transverse Loads and in Thermal Environments
,”
Int. J. Mech. Sci.
,
44
(
3
), pp.
561
584
.
13.
Navazi
,
H. M.
, and
Haddadpour
,
H.
,
2008
, “
Nonlinear Cylindrical Bending Analysis of Shear Deformable Functionally Graded Plates Under Different Loadings Using Analytical Methods
,”
Int. J. Mech. Sci.
,
50
(
12
), pp.
1650
1657
.
14.
Oktem
,
A. S.
,
Mantari
,
J. L.
, and
Soares
,
C. G.
,
2012
, “
Static Response of Functionally Graded Plates and Doubly-Curved Shells Based on a Higher Order Shear Deformation Theory
,”
Eur. J. Mech. A: Solids
,
36
, pp.
163
172
.
15.
Woo
,
J.
, and
Meguid
,
S. A.
,
2001
, “
Nonlinear Analysis of Functionally Graded Plates and Shallow Shells
,”
Int. J. Solids Struct.
,
38
, pp.
7409
7421
.
16.
Zhao
,
X.
, and
Liew
,
K. M.
,
2009
, “
Geometrically Nonlinear Analysis of Functionally Graded Shells
,”
Int. J. Mech. Sci.
,
51
(
2
), pp.
131
144
.
17.
Kiani
,
Y.
, and
Eslami
,
M. R.
,
2014
, “
Thermal Postbuckling of Imperfect Circular Functionally Graded Material Plates: Examination of Voigt, Mori–Tanaka, and Self-Consistent Schemes
,”
ASME J. Pressure Vessel Technol.
,
137
(
2
), p.
021201
.
18.
Jodaei
,
A.
, and
Yas
,
M. H.
,
2012
, “
Three-Dimensional Free Vibration Analysis of Functionally Graded Annular Plates on Elastic Foundations Via State-Space Based Differential Quadrature Method
,”
ASME J. Pressure Vessel Technol.
,
134
(
3
), p.
031208
.
19.
Farid
,
M.
,
Zahedinejad
,
P.
, and
Malekzadeh
,
P.
,
2010
, “
Three-Dimensional Temperature Dependent Free Vibration Analysis of Functionally Graded Material Curved Panels Resting on Two-Parameter Elastic Foundation Using a Hybrid Semi-Analytic, Differential Quadrature Method
,”
Mater. Des.
,
31
(
1
), pp.
2
13
.
20.
Kiani
,
Y.
,
Akbarzadeh
,
A. H.
,
Chen
,
Z. T.
, and
Eslami
,
M. R.
,
2012
, “
Static and Dynamic Analysis of an FGM Doubly Curved Panel Resting on the Pasternak-Type Elastic Foundation
,”
Compos. Struct.
,
94
(
8
), pp.
2474
2484
.
21.
Duc
,
N. D.
, and
Quan
,
T. Q.
,
2012
, “
Nonlinear Stability Analysis of Double-Curved Shallow FGM Panels on Elastic Foundations in Thermal Environments
,”
Mech. Compos. Mater.
,
48
(
4
), pp.
435
448
.
22.
Duc
,
N. D.
,
Anh
,
V. T. T.
, and
Cong
,
P. H.
,
2014
, “
Nonlinear Axisymmetric Response of FGM Shallow Spherical Shells on Elastic Foundations Under Uniform External Pressure and Temperature
,”
Eur. J. Mech. A: Solids
,
45
, pp.
80
89
.
23.
Shen
,
H. S.
, and
Wang
,
H.
,
2014
, “
Nonlinear Vibration of Shear Deformable FGM Cylindrical Panels Resting on Elastic Foundations in Thermal Environments
,”
Compos. Part B: Eng.
,
60
, pp.
167
177
.
24.
Praveen
,
G. N.
, and
Reddy
,
J. N.
,
1998
, “
Nonlinear Transient Thermoelastic Analysis of Functionally Graded Ceramic-Metal Plates
,”
Int. J. Solids Struct.
,
35
(
33
), pp.
4457
4476
.
25.
Shen
,
H. S.
,
2007
, “
Nonlinear Thermal Bending Response of FGM Plates Due to Heat Conduction
,”
Compos. Part B: Eng.
,
38
(
2
), pp.
201
215
.
26.
Yang
,
J.
, and
Shen
,
H. S.
,
2003
, “
Non-Linear Analysis of Functionally Graded Plates Under Transverse and In-Plane Loads
,”
Int. J. Nonlinear Mech.
,
38
(
4
), pp.
467
482
.
27.
Yang
,
J.
, and
Shen
,
H. S.
,
2003
, “
Nonlinear Bending Analysis of Shear Deformable Functionally Graded Plates Subjected to Thermomechanical Loads Under Various Boundary Conditions
,”
Compos. Part B: Eng.
,
34
(
2
), pp.
103
115
.
28.
Na
,
K. S.
, and
Kim
,
J. H.
,
2006
, “
Nonlinear Bending Response of Functionally Graded Plates Under Thermal Loads
,”
J. Therm. Stresses
,
29
(
3
), pp.
245
261
.
29.
Alinia
,
M. M.
, and
Ghannadpour
,
S. A. M.
,
2009
, “
Nonlinear Analysis of Pressure Loaded FGM Plates
,”
Compos. Struct.
,
88
(
3
), pp.
354
359
.
30.
Ovesy
,
H. R.
, and
Ghannadpour
,
S. A. M.
,
2007
, “
Large Deflection Finite Strip Analysis of Functionally Graded Plates Under Pressure Loads
,”
Int. J. Struct. Stab. Dyn.
,
7
(
2
), pp.
193
211
.
31.
Khabbaz
,
R. S.
,
Manshadi
,
B. D.
, and
Abedian
,
A.
,
2009
, “
Nonlinear Analysis of FGM Plates Under Pressure Loads Using the Higher-Order Shear Deformation Theories
,”
Compos. Struct.
,
89
(
3
), pp.
333
344
.
32.
Kerur
,
S. B.
, and
Ghosh
,
A.
,
2013
, “
Geometrically Non-Linear Bending Analysis of Piezoelectric Fiber-Reinforced Composite (MFC/AFC) Cross-Ply Plate Under Hygrothermal Environment
,”
J. Therm. Stresses
,
36
(
12
), pp.
1255
1282
.
33.
Phung-Van
,
P.
,
Nguyen-Thoi
,
T.
,
Luong-Van
,
H.
, and
Lieu-Xuan
,
Q.
,
2014
, “
Geometrically Nonlinear Analysis of Functionally Graded Plates Using a Cell-Based Smoothed Three-Node Plate Element (CS-MIN3) Based on the C0-HSDT
,”
Comput. Methods Appl. Mech. Eng.
,
270
, pp.
15
36
.
34.
Zhang
,
D. G.
,
2014
, “
Nonlinear Bending Analysis of FGM Rectangular Plates With Various Supported Boundaries Resting on Two-Parameter Elastic Foundations
,”
Arch. Appl. Mech.
,
84
(
1
), pp.
1
20
.
35.
Reddy
,
J. N.
, and
Chin
,
C. D.
,
1998
, “
Thermoelastical Analysis of Functionally Graded Cylinders and Plates
,”
J. Therm. Stresses
,
21
(
6
), pp.
593
626
.
36.
Shen
,
H. S.
,
2009
,
Functionally Graded Material: Nonlinear Analysis of Plates and Shells
,
CRC Press
,
Boca Raton, FL
.
37.
Gibson
,
L. J.
,
Ashby
,
M. F.
,
Karam
,
G. N.
,
Wegst
,
U.
, and
Shercliff
,
H. R.
,
1995
, “
Mechanical Properties of Natural Materials. II. Microstructures for Mechanical Efficiency
,”
Proc. R. Soc. London A. Math.
,
450
(
1938
), pp.
141
162
.
38.
Tornabene
,
F.
,
Viola
,
E.
, and
Fantuzzi
,
N.
,
2014
, “
General Higher-Order Equivalent Single Layer Theory for Free Vibrations of Doubly-Curved Laminated Composite Shells and Panels
,”
Compos. Struct.
,
104
, pp.
94
117
.
39.
Tornabene
,
F.
,
Fantuzzi
,
N.
, and
Bacciocchi
,
M.
,
2014
, “
The Local GDQ Method Applied to General Higher-Order Theories of Doubly-Curved Laminated Composite Shells and Panels: The Free Vibration Analysis
,”
Compos. Struct.
,
116
, pp.
637
660
.
40.
Tornabene
,
F.
,
Fantuzzi
,
N.
,
Viola
,
E.
, and
Carrera
,
E.
,
2014
, “
Static Analysis of Doubly-Curved Anisotropic Shells and Panels Using CUF Approach, Differential Geometry and Differential Quadrature Method
,”
Compos. Struct.
,
107
, pp.
675
697
.
41.
Reddy
,
J. N.
,
2004
,
Mechanics of Laminated Composite: Plates and Shells-Theory and Analysis
,
CRC Press
,
Boca Raton, FL
.
42.
Szekrenyes
,
A.
,
2014
, “
Stress and Fracture Analysis in Delaminated Orthotropic Composite Plates Using Third-Order Shear Deformation Theory
,”
Appl. Math. Modell.
,
38
(
15–16
), pp.
3897
3916
.
43.
Szekrenyes
,
A.
,
2014
, “
Bending Solution of Third-Order Orthotropic Reddy Plates With Asymmetric Interfacial Crack
,”
Int. J. Solids Struct.
,
51
(
14
), pp.
2598
2619
.
44.
Li
,
Q.
,
Iu
,
V. P.
, and
Kou
,
K. P.
,
2009
, “
Three-Dimensional Vibration Analysis of Functionally Graded Material Plates in Thermal Environment
,”
J. Sound Vib.
,
324
, pp.
733
750
.
45.
Cook
,
R. D.
,
Malkus
,
D. S.
,
Plesha
,
M. E.
, and
Witt
,
R. J.
,
2009
,
Concepts and Applications of Finite Element Analysis
,
Wiley
,
Singapore
.
46.
Kar
,
V. R.
, and
Panda
,
S. K.
,
2014
, “
Nonlinear Free Vibration of Functionally Graded Doubly Curved Shear Deformable Panels Using Finite Element Method
,”
J. Vib. Control
,
22
(
7
), pp.
1935
1949
.
47.
Reddy
,
J. N.
,
2004
,
An Introduction Nonlinear Finite Element Analysis
,
Oxford University Press
,
Cambridge, UK
.
48.
Kar
,
V. R.
, and
Panda
,
S. K.
,
2015
, “
Thermoelastic Analysis of Functionally Graded Doubly Curved Shell Panels Using Nonlinear Finite Element Method
,”
Compos. Struct.
,
129
, pp.
202
212
.
You do not currently have access to this content.