The viscoelastic properties of the resins used in carbon fiber composite pressure vessels introduce time effects which allow damage processes to develop during use under load. A detailed understanding of these processes has been achieved through both experimental and theoretical studies on flat unidirectional specimens and with comparisons with the behavior of pressure vessels. Under steady pressures, the relaxation of the resin in the vicinity of earlier fiber breaks gradually increases the sustained stress in neighboring intact fibers and some eventually break. The rate of fiber failure has been modeled based only on physical criteria and shown to accurately predict fiber failure leading to composite failure, as seen in earlier studies. Under monotonic loading, failure is seen to be initiated when the earlier random nature of breaks changes so as to produce clusters of fiber breaks. Under steady loading, at loads less than that producing monotonic failure, greater damage can be sustained without immediately inducing composite failure. However, if the load level is high enough failure does eventually occur. It has been shown, however, that below a certain load level the probability of failure reduces asymptotically to zero. This allows a minimum safety factor to be quantitatively determined taking into account the intrinsic nature of the composite although other factors such as accidental damage or manufacturing variations need to be assessed before such a factor can be proposed as standards for pressure vessels.

References

References
1.
Bunsell
,
A.
, and
Somer
,
A.
,
1992
, “
The Tensile and Fatigue Behaviour of Carbon Fibres
,”
Plast. Rubber Compos. Process. Appl.
,
18
, pp.
263
267
.
2.
Fuwa
,
M.
,
Bunsell
,
A.
, and
Harris
,
B.
,
1976
, “
An Evaluation of Acoustic Emission Techniques Applied to Carbon Fibre Composites
,”
J. Phys. D: Appl. Phys.
,
9
(
2
), pp.
353
364
.
3.
Laroche
,
D.
, and
Bunsell
,
A.
,
1975
, “
Stress and Time Dependent Damage in CFRP
,”
J. Phys. D: Appl. Phys
,
8
, pp.
1460
1471
.
4.
Blassiau
,
S.
,
2005
, “
Modélisation des phénomènes microstructuraux au sein d'un composite unidirectionnel carbone/époxy et prédiction de durée de vie: contrôle et qualification de réservoirs bobinés
,” thèse de l'Ecole des Mines de Paris, France.
5.
Blassiau
,
S.
,
Thionnet
,
A.
, and
Bunsell
,
A.
,
2006
, “
Micromechanisms of Load Transfer in a Unidirectional Carbon-Fibre Epoxy Composite Due to Fibre Failures—Part 1: Micromechanisms and 3D Analysis of Load Transfer: The Elastic Case
,”
Compos. Struct.
,
74
(
3
), pp.
303
318
.
6.
Blassiau
,
S.
,
Thionnet
,
A.
, and
Bunsell
,
A.
,
2006
, “
Micromechanisms of Load Transfer in a Unidirectional Carbon-Fibre Epoxy Composite Due to Fibre Failures—Part 2: Influence of Viscoelastic and Plastic Matrices on the Mechanism of Load Transfer
,”
Compos. Struct.
,
74
(
3
), pp.
319
331
.
7.
Blassiau
,
S.
,
Thionnet
,
A.
, and
Bunsell
,
A.
,
2008
, “
Micromechanisms of Load Transfer in a Unidirectional Carbon-Fibre Epoxy Composite Due to Fibre Failures—Part 3: Multiscale Reconstruction of Composite Behaviour
,”
Compos. Struct.
,
83
(
3
), pp.
312
323
.
8.
Rosen
,
B.
,
1964
, “
Tensile Failure of Fibrous Composites
,”
AIAA J.
,
2
(
11
), pp.
1985
1991
.
9.
Cox
,
H.
,
1951
, “
The Elasticity and Strength of Paper and Other Fibrous Materials
,”
Br. J. Appl. Phys.
,
3
, pp.
72
79
.
10.
Zweben
,
C.
,
1968
, “
Tensile Failure of Fibers Composites
,”
AIAA J.
,
6
(
12
), pp.
2325
2331
.
11.
Hedgepeth
,
J.
,
1961
, “
Stress Concentrations in Filamentary Structures
,” NASA Langley Research Center, Hampton, VA, Report No.
NASA
TN-D-882.
12.
Ochiai
,
S.
,
Schulte
,
K.
, and
Peters
,
P.
,
1991
, “
Strain Concentration for Fibers and Matrix in Unidirectional Composites
,”
Compos. Sci. Technol.
,
41
(
3
), pp.
237
256
.
13.
Curtin
,
W.
,
2000
, “
Dimensionality and Size Effects on the Strength of Fiber-Reinforced Composites
,”
Compos. Sci. Technol.
,
60
(
4
), pp.
543
551
.
14.
Curtin
,
W.
, and
Takeda
,
N.
,
1998
, “
Tensile Strength of Fiber-Reinforced Composites—I: Model and Effects of Local Fiber Geometry
,”
J. Compos. Mater.
,
32
(
22
), pp.
2042
2059
.
15.
Ibnabdeljalil
,
M.
, and
Curtin
,
W.
,
1997
, “
Strength and Reliability of Fiber-Reinforced Composites: Localized Load Sharing and Associated Size Effects
,”
Int. J. Solids Struct.
,
34
(
21
), pp.
2649
2668
.
16.
Goree
,
J.
, and
Gross
,
R.
,
1980
, “
Stresses in a Three-Dimensional Unidirectional Composite Containing Broken Fibers
,”
Eng. Fract. Mech.
,
13
(
2
), pp.
395
405
.
17.
Harlow
,
D.
, and
Phoenix
,
S.
,
1978
, “
The Chain-of-Bundles Probability Model for the Strength of Fibrous Materials—1: Analysis and Conjectures
,”
J. Compos. Mater.
,
12
(
2
), pp.
195
213
.
18.
Harlow
,
D.
, and
Phoenix
,
S.
,
1978
, “
The Chain-of-Bundles Probability Model for the Strength of Fibrous Materials—2: A Numerical Study of Convergence
,”
J. Compos. Mater.
,
12
(
3
), pp.
314
334
.
19.
Scop
,
P.
, and
Argon
,
A.
,
1967
, “
Statistical Theory of Strength of Laminated Composites
,”
J. Compos. Mater.
,
1
(
1
), pp.
92
99
.
20.
Scop
,
P.
, and
Argon
,
A.
,
1969
, “
Statistical Theory of Strength of Laminated Composites 2
,”
J. Compos. Mater.
,
3
(
1
), pp.
30
44
.
21.
Kong
,
P.
,
1979
, “
A Monte Carlo Study of the Strength of Unidirectional Fiber-Reinforced Composites
,”
J. Compos. Mater.
,
13
(
4
), pp.
311
327
.
22.
Batdorf
,
S.
,
1982
, “
Tensile Strength of Unidirectionally Reinforced Composites-1
,”
J. Reinf. Plast. Compos.
,
1
(
2
), pp.
153
163
.
23.
Batdorf
,
S.
,
1982
, “
Tensile Strength of Unidirectionally Reinforced Composites-2
,”
J. Reinf. Plast. Compos.
,
1
(
2
), pp.
165
175
.
24.
Nedele
,
M.
, and
Wisnom
,
M.
,
1994
, “
Three Dimensional Finite Analysis of the Stress Concentration at a Single Fibre Break
,”
Compos. Sci. Technol.
,
51
(
4
), pp.
517
524
.
25.
Nedele
,
M.
, and
Wisnom
,
M.
,
1994
, “
Stress Concentration Factors Around a Broken Fibre in a Unidirectional Carbon Fibre-Reinforced Epoxy
,”
Composites
,
25
(
7
), pp.
549
557
.
26.
Hedgepeth
,
J.
, and
Dyke
,
P. V.
,
1967
, “
Local Stress Concentrations in Imperfect Filamentary Composite Materials
,”
J. Compos. Mater.
,
1
(
3
), pp.
294
309
.
27.
Baxevanakis
,
C.
,
1994
, “
Comportement statistique à rupture des composites stratifiés
,”
thèse de l'Ecole des Mines de Paris
,
France
.
28.
Landis
,
C.
, and
McMeeking
,
R.
,
1999
, “
Stress Concentrations in Composites With Interface Sliding, Matrix Stiffness and Uneven Fiber Spacing Using Shear Lag Theory
,”
Int. J. Solids Struct.
,
36
(
28
), pp.
4333
4361
.
29.
Landis
,
C.
,
Beyerlein
,
I.
, and
McMeeking
,
R.
,
2000
, “
Micromechanical Simulation of the Failure of Fiber Reinforced Composites
,”
J. Mech. Phys. Solids
,
48
(
3
), pp.
621
648
.
30.
Phoenix
,
S.
,
1997
, “
Statistical Issues in the Fracture of Brittle Matrix Fibrous Composites: Localized Load-Sharing and Associated Size Effects
,”
Int. J. Solids Struct.
,
34
, pp.
2649
2668
.
31.
Phoenix
,
S.
, and
Beyerlein
,
I.
,
2000
, “
Statistical Strength Theory for Fibrous Composite Materials
,”
Comprehensive Composite Materials
,
A.
Kelly
and
C.
Zweben
, eds.,
Pergamon-Elsevier Science
,
New York
, pp.
559
639
.
32.
Phoenix
,
S.
, and
Newman
,
W.
,
2009
, “
Time-Dependent Fiber Bundles With Local Load Sharing—II: General Weibull Fibers
,”
Phys. Rev.
,
80
, p.
066115
.
33.
Mahesh
,
S.
, and
Phoenix
,
S.
,
2004
, “
Lifetime Distributions for Unidirectional Fibrous Composites Under Creep-Rupture Loading
,”
Int. J. Fract.
,
127
(
4
), pp.
303
360
.
34.
Wisnom
,
M.
, and
Green
,
D.
,
1995
, “
Tensile Failure Due to Interaction Between Fibre Breaks
,”
Composites
,
26
(
7
), pp.
499
508
.
35.
van den Heuvel
,
P.
,
Goutianos
,
S.
,
Young
,
R.
, and
Peijs
,
T.
,
2004
, “
Failure Phenomena in Fibre-Reinforced Composites—Part 6: A Finite Element Study of Stress Concentrations in Unidirectional CFR Epoxy Composites
,”
Compos. Sci. Technol.
,
64
(
5
), pp.
645
656
.
36.
van den Heuvel
,
P.
,
Wubbolts
,
M.
,
Young
,
R.
, and
Peijs
,
T.
,
1998
, “
Failure Phenomena in Two-Dimensional Multi-Fibre Model Composites—5: A Finite Element Study
,”
Composites, Part A
,
29
(
9–10
), pp.
1121
1135
.
37.
Lifschitz
,
J.
, and
Rotem
,
A.
,
1970
, “
Time-Dependent Longitudinal Strength of Unidirectional Fibrous Composites
,”
Fibre Sci. Technol.
,
3
(
1
), pp.
1
20
.
38.
Lagoudas
,
D.
,
Hui
,
C.
, and
Phoenix
,
S.
,
1989
, “
Time Evolution of Overstress Profiles Near Broken Fibers in a Composite With a Viscoelastic Matrix
,”
Int. J. Solids Struct.
,
25
(
1
), pp.
45
66
.
39.
Beyerlein
,
I.
,
Zhou
,
C.
, and
Schadler
,
L.
,
1998
, “
Time Evolution of Stress Redistribution Around Multiple Fiber Breaks in a Composite With Viscous and Viscoelastic Matrices
,”
Int. J. Solids Struct.
,
35
(
24
), pp.
3177
3211
.
40.
Scott
,
A.
,
Sinclair
,
I.
,
Spearing
,
S.
,
Thionnet
,
A.
, and
Bunsell
,
A.
,
2012
, “
Damage Accumulation in a Carbon/Epoxy Composite: Comparison Between a Multiscale Model and Computed Tomography Experimental Results
,”
Composites, Part A
,
43
(
9
), pp.
1514
1522
.
41.
Chou
,
H.
,
Bunsell
,
A.
,
Mair
,
G.
, and
Thionnet
,
A.
,
2013
, “
Effect of the Loading Rate on Ultimate Strength of Composites. Application: Pressure Vessel Slow Burst Test
,”
Compos. Struct.
,
104
, pp.
144
153
.
42.
Blassiau
,
S.
,
Thionnet
,
A.
, and
Bunsell
,
A.
,
2009
, “
Three-Dimensional Analysis of Load Transfer Micro-Mechanisms in Fibre/Matrix Composites
,”
Compos. Sci. Technol.
,
69
(
1
), pp.
33
39
.
43.
Chou
,
H.
,
Mouritz
,
A.
,
Bannister
,
M.
, and
Bunsell
,
A.
,
2015
, “
Acoustic Emission Analysis of Composite Pressure Vessels Under Constant and Cyclic Pressure
,”
Composites, Part A
,
70
, pp.
111
120
.
You do not currently have access to this content.