An experimental study on the underwater buckling of composite and metallic tubes is conducted to evaluate and compare their collapse mechanics. Experiments are performed in a pressure vessel designed to provide constant hydrostatic pressure through the collapse. Filament-wound carbon-fiber/epoxy, glass/polyester (PE) tubes, and aluminum tubes are studied to explore the effect of material type on the structural failure. Three-dimensional digital image correlation (DIC) technique is used to capture the full-field deformation and velocities during the implosion event. Local pressure fields generated by the implosion event are measured using dynamic pressure transducers to evaluate the strength of the emitted pressure pulse. The results show that glass/PE tubes release the weakest pressure pulse and carbon/epoxy tubes release the strongest upon collapse. In each case, the dominating mechanisms of failure control the amount of flow energy released.

References

References
1.
Turner
,
S. E.
,
2007
, “
Underwater Implosion of Glass Spheres
,”
J. Acoust. Soc. Am.
,
121
(
2
), pp.
844
852
.
2.
Turner
,
S. E.
, and
Ambrico
,
J. M.
,
2012
, “
Underwater Implosion of Cylindrical Metal Tubes
,”
ASME J. Appl. Mech.
,
80
(
1
) pp.
1
11
.
3.
Urick
,
R. J.
,
1963
, “
Implosions as Sources of Underwater Sound
,”
J. Acoust. Soc. Am.
,
35
(
12
), pp.
2026
2027
.
4.
Orr
,
M.
, and
Schoenberg
,
M.
,
1976
, “
Acoustic Signatures From Deep Water Implosions of Spherical Cavities
,”
J. Acoust. Soc. Am.
,
59
(
5
), pp.
1155
1159
.
5.
Harben
,
P. E.
, and
Boro
,
C.
,
2001
, “
Implosion Source Development and Diego Garcia Reflections
,”
23rd Seismic Research Review: Worldwide Monitoring of Nuclear Explosions
, Jackson Hole, WY, Oct. 2–5, pp.
23
31
.
6.
Cartlidge
,
E.
,
2001
, “
Accident Grounds Neutrino Lab
,” Last accessed Sept. 2, 2014, http://physicsworld.com/cws/article/news/2001/nov/15/accident-grounds-neutrino-lab
7.
Ling
,
J.
,
Bishai
,
M.
,
Diwan
,
M.
,
Dolph
,
J.
,
Kettell
,
S.
,
Sexton
,
K.
,
Sharma
,
R.
,
Simos
,
N.
,
Stewart
,
J.
,
Tanaka
,
H.
,
Viren
,
B.
,
Arnold
,
D.
,
Tabor
,
P.
,
Turner
,
S.
,
Benson
,
T.
,
Wahl
,
D.
,
Wendt
,
C.
,
Hahn
,
A.
,
Kaducak
,
M.
,
Mantsch
,
P.
, and
Sundaram
,
S. K.
,
2013
, “
Implosion Chain Reaction Mitigation in Underwater Assemblies of Photomultiplier Tubes
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
,
729
, pp.
491
499
.
8.
Diwan
,
M.
,
Dolph
,
J.
,
Ling
,
J.
,
Sharma
,
R.
,
Sexton
,
K.
,
Simos
,
N.
,
Tanaka
,
H.
,
Arnold
,
D.
,
Tabor
,
P.
, and
Turner
,
S.
,
2012
, “
Underwater Implosions of Large Format Photo-Multiplier Tubes
,”
Phys. Proc.
,
37
, pp.
715
721
.
9.
Farhat
,
C.
,
Wang
,
C. G.
,
Main
,
A.
,
Kyriakides
,
S.
,
Lee
,
L. H.
,
Ravi-Chandar
,
K.
, and
Belytschko
,
T.
,
2013
, “
Dynamic Implosion of Underwater Cylindrical Shells: Experiments and Computations
,”
Int. J. Solids Struct.
,
50
(
19
), pp.
2943
2961
.
10.
Ikeda
,
C. M.
,
Wilkerling
,
J.
, and
Duncan
,
J. H.
,
2013
, “
The Implosion of Cylindrical Shell Structures in a High-Pressure Water Environment
,”
Proc. R. Soc. A
,
469
(
2160
), p.
20130443
.
11.
Moon
,
C. J.
,
Kim
, I.-H
.
,
Choi
,
B.-H.
,
Kweon
,
J.-H.
, and
Choi
,
J. H.
,
2010
, “
Buckling of Filament-Wound Composite Tubes Subjected to Hydrostatic Pressure for Underwater Vehicle Applications
,”
Compos. Struct.
,
92
(
9
), pp.
2241
2251
.
12.
Ross
,
C. T. F.
,
Little
,
A. P. F.
,
Haidar
,
Y.
, and
Waheeb
,
A. A.
,
2009
, “
Buckling of Carbon/Glass Composite Tubes Under Uniform External Hydrostatic Pressure
,”
Strain
,
47
(
s1
), pp.
156
174
.
13.
Smith
,
P. T.
,
Ross
,
C. T. F.
, and
Little
,
A. P. F.
,
2009
, “
Collapse of Composite Tubes Under Uniform External Hydrostatic Pressure
,”
J. Phys.: Conf. Ser.
,
181
(1), pp.
156
157
.
14.
Hernández-Moreno
,
H.
,
Douchin
,
B.
,
Collombet
,
F.
,
Choqueuse
,
D.
, and
Davies
,
P.
,
2008
, “
Influence of Winding Pattern on the Mechanical Behavior of Filament-Wound Composite Tubes Under External Pressure
,”
Compos. Sci. Technol.
,
68
(
3-4
), pp.
1015
1024
.
15.
Hur
,
S. H.
,
Son
,
H. J.
,
Kweon
,
J. H.
, and
Choi
,
J. H.
,
2008
, “
Postbuckling of Composite Tubes Under External Hydrostatic Pressure
,”
Compos. Struct.
,
86
(
1-3
), pp.
114
124
.
16.
Yang
,
C.
,
Pang
,
S. S.
, and
Zhao
,
Y.
,
1997
, “
Buckling Analysis of Thick-Walled Composite Pipe Under External Pressure
,”
J. Compos. Mater.
,
31
(
4
), pp.
409
426
.
17.
Pinto
,
M.
,
Gupta
,
S.
, and
Shukla
,
A.
,
2014
, “
Study of Implosion of Carbon/Epoxy Composite Hollow Cylinders Using 3-D Digital Image Correlation
,”
Compos. Struct.
,
119
, pp.
272
286
.
18.
Pinto
,
M.
,
Gupta
,
S.
, and
Shukla
,
A.
,
2015
, “
Hydrostatic Implosion of GFRP Composite Tubes Studied by Digital Image Correlation
,”
ASME J. Pressure Vessel Technol.
,
137
(
5
), p.
051302
.
19.
Mouritz
,
A. P.
,
Gellert
,
E.
,
Burchill
,
P.
, and
Challis
,
K.
,
2001
, “
Review of Advanced Composite Structures for Naval Ships and Submarines
,”
Compos. Struct.
,
53
(
1
), pp.
21
42
.
20.
Sutton
,
M. A.
,
Orteu
,
J. J.
, and
Schreier
,
H. W.
,
2009
,
Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications
,
Springer
,
New York
.
21.
Gupta
,
S.
,
Parameswaran
,
V.
,
Sutton
,
M. A.
, and
Shukla
,
A.
,
2014
, “
A Study of Underwater Implosion Using Digital Image Correlation
,”
Proc. R. Soc. A
,
470
(
2172
), p.
20140576
.
22.
Cole
,
R. H.
,
1948
,
Underwater Explosions
,
Princeton University
,
Princeton, NJ
.
23.
Arons
,
A.
, and
Yennie
,
D.
,
1948
, “
Energy Partition in Underwater Explosion Phenomena
,”
Rev. Mode Phys.
,
20
(
3
), pp.
519
536
.
24.
Kyriakides
,
S.
, and
Netto
,
T. A.
,
2000
, “
On the Dynamics of Propagating Buckles in Pipelines
,”
Int. J. Solids Struct.
,
37
(
46–47
), pp.
6843
6867
.
25.
Turner
,
S. E.
,
2004
, “
Small-Scale Implosion Testing of Glass and Aluminum Cylinders
,” Naval Undersea Warfare Center Division, Newport, RI, NUWC-NPT Technical Memorandum 04-061.
26.
Sridharan
,
S.
,
2008
,
Delamination Behaviour of Composites
,
Woodhead
,
Cambridge, UK
.
27.
Wonderly
,
C.
,
Grenestedt
,
J.
,
Fernlund
,
G.
, and
Cěpus
,
E.
,
2005
, “
Comparison of Mechanical Properties of Glass Fiber/Vinyl Ester and Carbon Fiber/Vinyl Ester Composites
,”
Compos. Part B
,
36
(
5
), pp.
417
426
.
You do not currently have access to this content.