In the paper, the efficiency of strengthening of a buried steel pipeline with a composite wrap subjected to an active faults action is analyzed. A three-dimensional numerical model of the pipeline is developed. The pipeline is considered as an elastoplastic steel shell, while the composite wrap is represented as an orthotropic elastic shell. The model takes into account the elastoplastic behavior of soil, contact interaction between the soil and the pipe, large inelastic strains, distortion of the pipeline cross section, and local buckling formation. A normal-slip fault kinematics with large fault offsets is considered in numerical modeling. The effect of the wrap thickness, length, and position relative to the fault plane is analyzed.

References

References
1.
Jennings
,
P. C.
,
1971
, “
Engineering Features of the San Fernando Earthquake February 9, 1971
,” California Institute of Technology Report, Pasadena, CA, Report No. EERL 71–02.
2.
MaCaffrey
,
M. A.
, and
O'Rourke
,
T. D.
,
1983
, “
Buried Pipeline Response to Reverse Faulting During the 1971 San Fernando Earthquake
,” International Symposium on Lifeline Earthquake Engineering, 4th National Congress on Pressure Vessel and Piping Technology, Portland, OR, June 19–24, pp.
151
159
.
3.
O'Rourke
,
T. D.
, and
Palmer
,
M. C.
,
1996
, “
Earthquake Performance of Gas Transmission Pipelines
,”
Earthquake Spectra
,
12
(
3
), pp.
493
527
.
4.
O'Rourke
,
M. J.
, and
Liu
,
X.
,
1999
, “
Response of Buried Pipelines Subject to Earthquake Effects
,” Multidisciplinary Center for Earthquake Engineering Research, New York.
5.
Liang
,
J.
, and
Sun
,
S.
,
2000
, “
Site Effects on Seismic Behaviour of Pipelines: A Review
,”
ASME J. Pressure Vessel Technol.
,
122
(
4
), pp.
469
475
.
6.
Tsai
,
J. S.
,
Jou
,
L. D.
, and
Lin
,
S. H.
,
2000
, “
Damage to Buried Water Supply Pipelines in the Chi-Chi (Taiwan) Earthquake and a Preliminary Evaluation of Seismic Resistance of Pipe Joints
,”
J. Chin. Inst. Eng.
,
23
(
4
), pp.
395
408
.
7.
Newmark
,
N. M.
, and
Hall
,
W. J.
,
1975
, “
Pipeline Design to Resist Large Fault Displacement
,”
U.S. National Conference on Earthquake Engineering, University of Michigan
,
Ann Arbor, MI
, June 18–20, pp.
416
425
.
8.
Kennedy
,
R. P.
,
Chow
,
A. W.
, and
Williamson
,
R. A.
,
1977
, “
Fault Movement Effects on Buried Oil Pipeline
,”
Transp. Eng. J. ASCE
,
103
, pp.
617
633
.
9.
Wang
,
L. R. L.
, and
Yeh
,
Y. A.
,
1985
, “
A Refined Seismic Analysis and Design of Buried Pipeline for Fault Movement
,”
Earthquake Eng. Struct. Dyn.
,
13
(
1
), pp.
75
96
.
10.
Karamitros
,
D. K.
,
Bouckovalas
,
G. D.
, and
Kouretzis
,
G. P.
,
2007
, “
Stress Analysis of Buried Steel Pipelines at Strike-Slip Fault Crossings
,”
Soil Dyn. Earthquake Eng.
,
27
(
3
), pp.
200
211
.
11.
Trifonov
,
O. V.
, and
Cherniy
,
V. P.
,
2010
, “
A Semi-Analytical Approach to a Nonlinear Stress-Strain Analysis of Buried Steel Pipelines Crossing Active Faults
,”
Soil Dyn. Earthquake Eng.
,
30
(
11
), pp.
1298
1308
.
12.
American Lifelines Alliance
,
2001
, “
Guidelines for the Design of Buried Steel Pipes
,” ASCE, New York.
13.
Joshi
,
S.
,
Prashant
,
A.
,
Deb
,
A.
, and
Jain
,
S. K.
,
2011
, “
Analysis of Buried Pipelines Subjected to Reverse Fault Motion
,”
Soil Dyn. Earthquake Eng.
,
31
(
7
), pp.
930
940
.
14.
Trifonov
,
O. V.
, and
Cherniy
,
V. P.
,
2011
, “
Analytical Model Versus Numerical Model in Stress-Strain Analysis of Buried Steel Pipelines Subjected to Fault Displacements
,”
III ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering
,
Corfu, Greece
, May 26–28.
15.
Uckan
,
E.
,
Akbas
,
B.
,
Shen
,
J.
,
Rou
,
W.
,
Paolacci
,
F.
, and
O'Rourke
,
M.
,
2015
, “
A Simplified Analysis Model for Determining the Seismic Response of Buried Steel Pipes at Strike-Slip Fault Crossings
,”
Soil Dyn. Earthquake Eng.
,
75
, pp.
55
65
.
16.
Takada
,
S.
,
Hassani
,
N.
, and
Fukuda
,
K.
,
2001
, “
A New Proposal for Simplified Design of Buried Steel Pipes Crossing Active Faults
,”
Earthquake Eng. Struct. Dyn.
,
30
(
8
), pp.
1243
1257
.
17.
Vazouras
,
P.
,
Karamanos
,
S. A.
, and
Dakoulas
,
P.
,
2010
, “
Finite Element Analysis of Buried Steel Pipelines Under Strike-Slip Fault Displacements
,”
Soil Dyn. Earthquake Eng.
,
30
(
11
), pp.
1361
1376
.
18.
Vazouras
,
P.
,
Karamanos
,
S. A.
, and
Dakoulas
,
P.
,
2012
, “
Mechanical Behavior of Buried Steel Pipes Crossing Active Strike-Slip Faults
,”
Soil Dyn. Earthquake Eng.
,
41
, pp.
164
180
.
19.
Trifonov
,
O. V.
, and
Cherniy
,
V. P.
,
2013
, “
Fault Impact on Buried Steel Pipelines: Modeling and Analysis
,”
Advances in Engineering Research
, Vol.
7
,
V. M.
Petrova
, ed.,
Nova Science
,
New York
, pp.
47
90
.
20.
Trifonov
,
O. V.
,
2015
, “
Numerical Stress-Strain Analysis of Buried Steel Pipelines Crossing Active Strike-Slip Faults With an Emphasis on Fault Modeling Aspects
,”
J. Pipeline Syst. Eng. Pract.
,
6
(
1
), p.
04014008
.
21.
Rehberg
,
T.
,
Schad
,
M.
, and
Green
,
M.
,
2010
, “
Non-Metallic Composite Repair Systems for Pipes and Pipelines
,”
3R Int.
,
1
, pp.
42
46
.
22.
ASME
,
2008
, “
Repair of Pressure Equipment and Piping
,” ASME New York, Standard No. ASME PCC-2-2008.
23.
Freire
,
J. L. F.
,
Vieira
,
R. D.
,
Diniz
,
J. L. C.
, and
Meniconi
,
L. C.
,
2007
, “
Effectiveness of Composite Repairs Applied to Damaged Pipeline
,”
Exp. Tech.
,
31
(
5
), pp.
59
66
.
24.
Alexander
,
C.
, and
Francini
,
B.
,
2006
, “
State of the Art Assessment of Composite Systems Used to Repair Transmission Pipelines
,”
ASME
Paper No. IPC2006-10484.
25.
Bakis
,
C. E.
,
Bank
,
L. C.
,
Brown
,
V. L.
,
Cosenza
,
E.
,
Davalos
,
F.
,
Lesko
,
J. J.
,
Machida
,
A.
,
Rizkalla
,
S.
, and
Triantafillou
,
T.
,
2002
, “
Fibre-Reinforced Polymer Composites for Construction—State-of-the-Art Review
,”
J. Compos. Constr., ASCE
,
6
(
2
), pp.
73
87
.
26.
da Costa-Mattos
,
H. S.
,
Reis
,
J. M. L.
,
Sampaio
,
R. F.
, and
Perrut
,
V. A.
,
2009
, “
An Alternative Methodology to Repair Localized Corrosion Damage in Metallic Pipelines With Epoxy Resins
,”
Mater. Des.
,
30
(
9
), pp.
3581
3591
.
27.
Duell
,
J. M.
,
Wilson
,
J. M.
, and
Kessler
,
M. R.
,
2008
, “
Analysis of a Carbon Composite Overwrap Pipeline Repair System
,”
Int. J. Pressure Vessels Piping
,
85
(
11
), pp.
782
788
.
28.
Block
,
N.
, and
Kishel
,
J.
,
1995
, “
Clock Spring® Reinforcement of Elbow Fittings
,” Gas Research Institute, Des Plaines, IL, Report No. GRI-93/0346.
29.
Alexander
,
C. R.
,
2007
, “
Guidelines for Repairing Damaged Pipelines Using Composite Materials
,”
NACE International Corrosion Conference and Exposition
,
Nashville, TN
, Mar. 11–15, Paper No. 07144, pp.
349
361
.
30.
Meniconi
,
L. C. M.
,
Freire
,
J. L. F.
,
Vieira
,
R. D.
, and
Diniz
,
J. L. C.
,
2002
, “
Stress Analysis of Pipelines With Composite Repairs
,”
ASME
Paper No. IPC2002-27372.
31.
Ghaffari
,
M. A.
, and
Hosseini-Toudeshky
,
H.
,
2013
, “
Fatigue Crack Propagation Analysis of Repaired Pipes With Composite Patch Under Cyclic Pressure
,”
ASME J. Pressure Vessel Technol.
,
135
(
3
), p.
031402
.
32.
Trifonov
,
O. V.
, and
Cherniy
,
V. P.
,
2014
, “
Analysis of Stress–Strain State in a Steel Pipe Strengthened With a Composite Wrap
,”
ASME J. Pressure Vessel Technol.
,
136
(
5
), p.
051202
.
33.
Reissner
,
E.
,
1945
, “
The Effect of Transverse Shear Deformation on the Bending of Elastic Plates
,”
ASME J. Appl. Mech.
,
12
, pp.
A68
77
.
34.
Mindlin
,
R. D.
,
1951
, “
Influence of Rotatory Inertia and Shear on Flexural Motions of Isotropic, Elastic Plates
,”
ASME J. Appl. Mech.
,
18
, pp.
31
38
.
35.
Ramberg
,
W.
, and
Osgood
,
W. R.
,
1943
, “
Description of Stress-Strain Curves by Three Parameters
,” National Advisory Committee for Aeronautics, Washington, DC, Technical Note No. 902.
36.
Crisfield
,
M. A.
,
2000
,
Non-Linear Finite Element Analysis of Solids and Structures
, Vol.
2
,
Wiley
,
Chichester, UK
.
37.
Daniel
,
I. M.
, and
Ishai
,
O.
,
1994
,
Engineering Mechanics of Composite Materials
,
Oxford University Press
,
New York
.
38.
Ishikawa
,
T.
, and
Chou
,
T. W.
,
1983
, “
One-Dimensional Micromechanical Analysis of Woven Fabric Composites
,”
AIAA J.
,
21
(
12
), pp.
1714
1721
.
39.
Naik
,
N. K.
, and
Shembekar
,
P. S.
,
1992
, “
Elastic Behavior of Woven Fabric Composites: I—Lamina Analysis
,”
J. Compos. Mater.
,
26
(
15
), pp.
2196
2225
.
40.
Karayaka
,
M.
, and
Kurath
,
P.
,
1994
, “
Deformation and Failure Behavior of Woven Composite Laminates
,”
ASME J. Eng. Mater. Technol.
,
116
(
2
), pp.
222
232
.
41.
Scida
,
D.
,
Aboura
,
Z.
,
Benzeggagh
,
M. L.
, and
Bocherens
,
E.
,
1999
, “
A Micromechanics Model for 3D Elasticity and Failure of Woven-Fibre Composite Materials
,”
Compos. Sci. Technol.
,
59
(
4
), pp.
505
517
.
42.
Tanov
,
R.
, and
Tabiei
,
A.
,
2001
, “
Computationally Efficient Micromechanical Models for Woven Fabric Composite Elastic Moduli
,”
ASME J. Appl. Mech.
,
68
(
4
), pp.
553
560
.
43.
Chung
,
P. W.
, and
Tamma
,
K. K.
,
1999
, “
Woven Fabric Composites—Developments in Engineering Bounds, Homogenization and Applications
,”
Int. J. Numer. Methods Eng.
,
45
(
12
), pp.
1757
1790
.
44.
Drucker
,
D. C.
, and
Prager
,
W.
,
1952
, “
Soil Mechanics and Plastic Analysis or Limit Design
,”
Q. Appl. Math.
,
10
(
2
), pp.
157
165
.
45.
O'Rourke
,
T. D.
,
2010
, “
Geohazards and Large, Geographically Distributed Systems
,”
Geotechnique
,
60
(
7
), pp.
505
543
.
46.
Trautmann
,
C. H.
, and
O'Rourke
,
T. D.
,
1983
, “
Behavior of Pipe in Dry Sand Under Lateral and Uplift Loading
,” Geotechnical Engineering Report, Cornell University, Ithaca, NY, Report No. 83-7.
47.
Yimsiri
,
S.
,
Soga
,
K.
,
Yoshizaki
,
K.
,
Dasari
,
G.
, and
O'Rourke
,
T. D.
,
2004
, “
Lateral and Upward Soil–Pipeline Interactions in Sand for Deep Embedment Conditions
,”
ASCE J. Geotech. Geoenviron. Eng.
,
130
(
8
), pp.
830
842
.
48.
Davis
,
E. H.
,
1968
, “
Theories of Plasticity and the Failure of Soil Masses
,”
Soil Mechanics: Selected Topics
,
I. K.
Lee
, ed.,
Butterworth
,
London
, pp.
341
380
.
49.
ANSYS
,
2011
, “
ANSYS Release 14.0 Documentation
,”
ANSYS Inc.
,
Canonsburg, PA
.
50.
Ju
,
G. T.
, and
Kyriakides
,
S.
,
1992
, “
Bifurcation and Localization Instabilities in Cylindrical Shells Under Bending—II. Predictions
,”
Int. J. Solids Struct.
,
29
(
9
), pp.
1143
1171
.
51.
Fleck
,
N. A.
,
Jelf
,
P. M.
, and
Curtis
,
P. T.
,
1995
, “
Compressive Failure of Laminated and Woven Composites
,”
J. Compos. Technol. Res.
,
17
(
3
), pp.
212
220
.
52.
Malcom
,
A. J.
,
Aronson
,
M. T.
,
Deshpande
,
V. S.
, and
Wadley
,
H. N. G.
,
2013
, “
Compressive Response of Glass Fiber Composite Sandwich Structures
,”
Composites, Part A
,
54
, pp.
88
97
.
53.
Zhang
,
J.
,
Chaisombat
,
K.
,
He
,
S.
, and
Wang
,
C. H.
,
2012
, “
Hybrid Composite Laminates Reinforced With Glass/Carbon Woven Fabrics for Lightweight Load Bearing Structures
,”
Mater. Des.
,
36
, pp.
75
80
.
54.
CEN EN
,
2006
, “
Eurocode 8, Part 4: Silos, Tanks and Pipelines
,” Comité Européen de Normalisation, Brussels, Belgium.
55.
Gresnigt
,
A. M.
,
1986
, “
Plastic Design of Buried Steel Pipes in Settlement Areas
,”
HERON
,
31
(
4
), pp.
1
113
.
56.
Gresnigt
,
A. M.
, and
Karamanos
,
S. A.
,
2009
, “
Local Buckling Strength and Deformation Capacity of Pipes
,”
19th International Offshore and Polar Engineering Conference
(
ISOPE-2009
),
Osaka, Japan
, June 21–26, pp.
212
223
.
You do not currently have access to this content.