The dynamic response of open-ended cylindrical glass fiber composite shells subjected to internal blast loading is studied in the current paper. The experimental observation on response characteristics of cylindrical glass fiber shells is presented, in which failure modes of composite structures are especially concerned. It is found that dynamic buckling may occur in the inner steel liner, which may consequently cause delamination and fiber fracture of the outer glass fiber shell and thus limits the blast loading resistant capability of glass fiber explosion containment vessels. The other failure mode is obvious circular plastic expansion of the inner steel liner and fiber fracture of the outer fiber shell. There exists an interesting case that hoop winding fibers fail but fibers with a winding angle do not fail, based on which the hybrid filament wound method for cylindrical composite containment vessels is proposed. The current study may contribute to further understanding on the design and application of glass fiber composite explosion containment vessels (CECVs).

References

References
1.
Zheng
,
J. Y.
,
Deng
,
G. D.
,
Chen
,
Y. J.
,
Sun
,
G. Y.
,
Hu
,
Y. L.
,
Zhao
,
L. M.
, and
Li
,
Q. M.
,
2006
, “
Experimental Investigation of Discrete Multilayered Vessels Under Internal Explosion
,”
Combust., Explos. Shock Waves
,
42
(
5
), pp.
617
622
.
2.
Clayton
,
A. M.
,
2013
, “
A Simplified Method to Determine Initial Estimates of Peak Strains in Composite Explosive Containment Vessels
,”
ASME
Paper No. PVP2013-97068.
3.
Fedorenko
,
A. G.
,
Syrunin
,
M. A.
, and
Ivanov
,
A. G.
,
2005
, “
Criterion for Selecting Composite Materials for Explosion Containment Structures (Review)
,”
Combust. Explos. Shock Waves
,
41
(
5
), pp.
487
495
.
4.
Fedorenko
,
A. G.
,
Tsypkin
,
V. I.
,
Ivanov
,
A. G.
,
Rusak
,
V. N.
, and
Zaikin
,
S. N.
,
1983
, “
Peculiarities of the Dynamic Deformation and Fracture of Cylindrical Glass-Fiber Reinforced Plastic Shells Upon Internal Impulse Loading
,”
Mekh. Kompoz. Mater.
,
19
(
1
), pp.
91
94
.
5.
Ivanov
,
A. G.
, and
Tsypkin
,
V. I.
,
1987
, “
Deformation and Fracture of Glass-Plastic Shells Under Extreme Shock Loads
,”
Mekh. Kompoz. Mater.
,
23
(
3
), pp.
332
339
.
6.
Tsypkin
,
V. I.
,
Rusak
,
V. N.
,
Ivanov
,
A. G.
,
Fedorenko
,
A. G.
, and
Vorontsova
,
O. S.
,
1987
, “
Deformation and Failure of Two-Layer Metal–Plastic Shells Under Internal Pulsed Loading
,”
Mekh. Kompoz. Mater.
,
23
(
5
), pp.
833
838
.
7.
Fedorenko
,
A. G.
,
Syrunin
,
M. A.
, and
Ivanov
,
A. G.
,
1989
, “
Dynamic Strength of Shells Made of a Glass-Fiber Reinforced Plastic
,”
Mekh. Kompoz. Mater.
,
25
(
3
), pp.
307
312
.
8.
Fedorenko
,
L. G.
,
Syrunin
,
M. A.
, and
Ivanov
,
A. G.
,
1991
, “
Effect of the Reinforcement Pattern of Oriented Fiberglass Plastics on the Strength of Circular Shells Under Internal Explosive Loading
,”
Mekh. Kompoz. Mater.
,
27
(
4
), pp.
631
640
.
9.
Rusak
,
V. N.
,
Fedorenko
,
A. G.
,
Syrunin
,
M. A.
,
Sobol'
,
L. A.
,
Sukhanov
,
A. V.
, and
Popov
,
V. G.
,
2002
, “
Limiting Deformability and Strength of Basalt-Plastic Shells Under Internal Explosive Loading
,”
Prikl. Mekh. Tekh. Fiz.
,
43
(
1
), pp.
186
195
.
You do not currently have access to this content.