Associated with mechanical and environmental degradation, such as low-oxygen potential, high carbon activity, and high operating temperature, premature failure generally occurs in ethylene cracking furnace tube. This work is aimed at damage evolution numerical simulation and life prediction of two commercial Fe–Cr–Ni alloys (HP40Nb alloy and KHR45A alloy) under different operating temperatures, subjected to coupled carburization damage and creep damage. The results show that carburization is the most important factor that caused ethylene cracking furnace tube to rupture ahead of service time. Increased operating temperatures accelerate the damage rate markedly for the two alloys. For HP40Nb alloy and KHR45A alloy, the service life at 1223 K is almost 2.5 and 3 times higher than the value at 1323 K, respectively. Due to a higher mass of Ni/(Cr + Fe) ratio, the service life of KHR45A alloy is longer than that of HP40Nb alloy at the same operating condition. Distribution of von Mises stress σe and maximum principal stress σp along the inner surface and the outer surface of tubes is different to each other with damage evolution at different operating temperatures.

References

1.
Alvino
,
A.
,
Ramires
,
D.
,
Tonti
,
A.
, and
Lega
,
D.
,
2014
, “
Influence of Chemical Composition on Microstructure and Phase Evolution of Two HP Heat Resistant Stainless Steels After Long Term Plant-Service Aging
,”
Mater. High Temp.
,
31
(
1
), pp.
1
10
.
2.
Andrade
,
A. R.
,
Bolfarini
,
C.
,
Ferreira
,
L. A. M.
,
SouzaFilho
,
C. D.
, and
Bonazzi
,
L. H. C.
,
2015
, “
Titanium Micro Addition in a Centrifugally Cast HPNb Alloy: High Temperature Mechanical Properties
,”
Mater. Sci. Eng. A Struct.
,
636
, pp.
48
52
.
3.
Piekarski
,
B.
,
2001
, “
Effect of Nb and Ti Additions on Microstructure, and Identification of Precipitates in Stabilized Ni-Cr Cast Austenitic Steels
,”
Mater. Charact.
,
47
(
3
), pp.
181
186
.
4.
Alvino
,
A.
,
Lega
,
D.
,
Giacobbe
,
F.
,
Mazzocchi
,
V.
, and
Rinaldi
,
A.
,
2010
, “
Damage Characterization in Two Reformer Heater Tubes After Nearly 10 Years of Service at Different Operative and Maintenance Conditions
,”
Eng. Failure Anal.
,
17
(7–8), pp.
1526
1541
.
5.
Tawancy
,
H. M.
,
2015
, “
Correlation Between Resistance to Carburization and Resistance to Oxidation of Selected High-Temperature Alloys
,”
Oxid. Met.
,
83
(
1–2
), pp.
1
19
.
6.
Shen
,
L. M.
,
Gong
,
J. M.
, and
Liu
,
H. S.
,
2014
, “
Carburisation Layer Evolution of Fe-Cr-Ni Alloy in Furnace After Long Term Service: Experimental Study and Numerical Prediction
,”
Mater. High Temp.
,
31
(
2
), pp.
148
154
.
7.
Voicu
,
R.
,
Andrieu
,
E.
,
Poquillon
,
D.
, and
Lacaze
,
J.
,
2009
, “
Microstructure Evolution of HP40-Nb Alloys During Aging Under Air at 1000 °C
,”
Mater. Charact.
,
60
(
9
), pp.
1020
1027
.
8.
Liu
,
C. J.
, and
Chen
,
Y.
,
2011
, “
Variations of the Microstructure and Mechanical Properties of HP40Nb Hydrogen Reformer Tube With Time at Elevated Temperature
,”
Mater. Des.
,
32
(
4
), pp.
2507
2512
.
9.
Almeida
,
L. H.
,
Ribeiro
,
A. F.
, and
May
,
L. I.
,
2002
, “
Microstructural Characterization of Modified 25Cr-35Ni Centrifugally Cast Steel Furnace TUBES
,”
Mater. Charact.
,
49
(
3
), pp.
219
229
.
10.
Wang
,
W. Z.
,
Xuan
,
F. Z.
,
Wang
,
Z. D.
, and
Wang
,
B.
,
2011
, “
Effect of Overheating Temperature on the Microstructure and Creep Behavior of HP40Nb Alloy
,”
Mater. Des.
,
32
(
7
), pp.
4010
4016
.
11.
Wen
,
J. F.
,
Tu
,
S. T.
, and
Gao
,
X. L.
,
2014
, “
New Model for Creep Damage Analysis and Its Application to Creep Crack Growth Simulations
,”
Mater. Sci. Technol. London
,
30
(
1
), pp.
32
37
.
12.
Wen
,
J. F.
, and
Tu
,
S. T.
,
2014
, “
A Multiaxial Creep-Damage Model for Creep Crack Growth Considering Cavity Growth and Microcrack Interaction
,”
Eng. Fract. Mech.
,
123
, pp.
197
210
.
13.
Shen
,
L. M.
,
Gong
,
J. M.
,
Jiang
,
Y.
, and
Geng
,
L. Y.
,
2012
, “
Damage Prediction of HP40Nb Steel With Coupled Creep and Carburization Based on the Continuum Damage Mechanics
,”
Acta Metall. Sin. (Engl. Let.)
,
25
(
4
), pp.
279
286
.
14.
Zhu
,
M. L.
,
Xu
,
Q.
, and
Zhang
,
J. S.
,
2003
, “
Numerical Simulation of Reaction-Diffusion During Carburization of HK40 Steel
,”
J. Mater. Sci. Technol.
,
19
, pp.
327
330
.
15.
Shen
,
L. M.
,
Gong
,
J. M.
, and
Jiang
,
Y.
,
2010
, “
Study on the Carburization Resistance of Cr25Ni35Nb and Cr35Ni45Nb Alloys for Ethylene Cracking Furnace Tube at High Temperature
,”
J. Shanghai Jiaotong Univ.
,
44
(
5
), pp.
604
608
.
16.
Hayhurst
,
D. R.
,
1972
, “
Creep Rupture Under Multi-Axial States of Stress
,”
J. Mech. Phys. Solids
,
20
(
6
), pp.
381
382
.
17.
Kachanov
,
L. M.
,
1958
, “
Time of the Rupture Process Under Creep Conditions
,”
Isv. Akad. Nauk SSR Otd Tekh. Nauk
,
8
, pp.
26
31
.
18.
Rabotnov
,
Y. N.
,
1969
, “
Creep Rupture
,”
Applied Mechanics
,
Springer
,
Berlin
, pp.
342
349
.
19.
Niu
,
X. C.
,
Gong
,
J. M.
,
Jiang
,
Y.
, and
Bao
,
J. T.
,
2009
, “
Creep Damage Prediction of the Steam Pipelines With High Temperature and High Pressure
,”
Int. J. Pressure Vessel Piping
,
86
(
9
), pp.
593
598
.
20.
Nishiyama
,
Y.
,
Otsuka
,
N.
, and
Nishizawa
,
T.
,
2003
, “
Carburization Resistance of Austenitic Alloys in CH4-CO2-H2 Gas Mixtures at Elevated Temperatures
,”
Corrosion
,
59
(
8
), pp.
670
688
.
21.
Grabke
,
H. J.
, and
Jakobi
,
D.
,
2002
, “
High Temperature Corrosion of Cracking Tubes
,”
Mater. Corros.
,
53
(
7
), pp.
494
499
.
22.
Nishiyama
,
Y.
, and
Otsuka
,
N.
,
2005
, “
Degradation of Surface Oxide Scale on Fe-Ni-Cr-Si Alloys Upon Cyclic Coking and Decoking Procedures in a Simulated Ethylene Pyrolysis Gas Environment
,”
Corrosion
,
61
(
1
), pp.
84
93
.
23.
Nguyen
,
T. D.
,
Zhang
,
J. Q.
, and
Young
,
D. J.
,
2014
, “
Effects of Silicon on High Temperature Corrosion of Fe-Cr and Fe-Cr-Ni Alloys in Carbon Dioxide
,”
Oxid. Met.
,
81
(
5–6
), pp.
549
557
.
24.
Yin
,
R.
,
2005
, “
Carburization of 310 Stainless Steel Exposed at 800–1100 °C in 2%CH4/H2 Gas Mixture
,”
Corros. Sci.
,
47
(
8
), pp.
1896
1910
.
You do not currently have access to this content.