An inverse heat conduction analysis method for piping elbow was developed to estimate the temperature and stress distribution on the inner surface by measuring the outer surface temperature. In the paper, the accuracy for the thermal stress calculation using the inverse heat conduction analysis method was confirmed by comparing with the reference results from normal FE heat conduction and thermal stress analyses. In the case of the measured-basis fluid temperature input from a high temperature–pressure test, the inverse analysis method estimated the maximum stress change by 7% conservative comparing with the normal FE analyses.

References

References
1.
Shah
, V
. N.
,
Hartley
,
R. S.
,
Hsu
,
C.
,
Atwood
,
C. L.
,
Ware
,
A. G.
, and
Sattison
,
M. B.
,
1999
, “
Assessment of Field Experience Related to Pressurized Water Reactor Primary System Leaks
,”
ASME Pressure Vessels and Piping Conference
, Boston, MA, Aug. 1–5, pp.
23
32
.
2.
Yu
,
Y. J.
,
Park
,
S. H.
,
Sohn
,
G. H.
, and
Bak
,
W. J.
,
1997
, “
Structural Evaluation of Thermal Stratification for PWR Surge Line
,”
Nucl. Eng. Des.
,
178
(
2
), pp.
211
220
.
3.
Nakamura
,
A.
,
Murase
,
M.
,
Sasaki
,
T.
,
Takenaka
,
N.
, and
Hamatani
,
D.
,
2002
, “
Experiments and Numerical Simulations of Fluctuating Thermal Stratification in a Branch Pipe
,”
INSS J.
,
9
, pp.
67
79
(in Japanese).
4.
Blondet
,
E.
, and
Faidy
,
C.
,
2002
, “
High Cycle Thermal Fatigue in French PWR
,”
ASME
Paper No. ICONE10-22762.
5.
JSME
,
2003
,
Guideline for Evaluation of High-Cycle Thermal Fatigue of a Pipe
,
The Japan Society of Mechanical Engineers
,
Tokyo
, Standard No. S017-2003.
6.
Shao
,
Z. S.
,
2005
, “
Mechanical and Thermal Stresses of a Functionally Graded Circular Hollow Cylinder With Finite Length
,”
Int. J. Pressure Vessels Piping
,
82
(
3
), pp.
155
163
.
7.
Kandil
,
A. A.
,
El-Kady
,
A.
, and
El-Kafrawy
,
A.
,
1995
, “
Transient Thermal Stress Analysis of Thick-Walled Cylinders
,”
Int. J. Mech. Sci.
,
37
(
7
), pp.
721
732
.
8.
Ishizaka
,
T.
,
Kubo
,
S.
, and
Ioka
,
S.
,
2006
, “
An Inverse Method for Determining Thermal Load History Which Reduces Transient Thermal Stresses
,”
ASME
Paper No. PVP2006-ICPVT-11-93618.
9.
Kubo
,
S.
,
Uchida
,
K.
,
Ishizaka
,
T.
, and
Ioka
,
S.
, “
Determination of the Optimum Temperature History of Inlet Water for Minimizing Thermal Stresses in a Pipe by Multiphysics Inverse Analyses
,” 6th International Conference on Inverse Problems in Engineering Theory and Practice (
ICIPE2008
), Dourdan, France, June 15–19.
10.
Kubo
,
S.
,
1992
,
Inverse Problem
,
Baifukan
,
Tokyo
(in
Japanese
).
11.
Hsu
,
P. T.
,
2006
, “
Estimating the Boundary Condition in a 3D Inverse Hyperbolic Heat Conduction Problem
,”
Appl. Math. Comput.
,
117
(
2
), pp.
453
464
.
12.
Huang
,
C. H.
, and
Wang
,
S. P.
,
1999
, “
A Three-Dimensional Inverse Heat Conduction Problem in Estimating Surface Heat Flux by Conjugate Gradient Method
,”
Int. J. Heat Mass Transfer
,
42
(
18
), pp.
3387
3403
.
13.
Huang
,
C. H.
, and
Chen
,
W. C.
,
2000
, “
A Three-Dimensional Inverse Forced Convection Problem in Estimating Surface Heat Flux by Conjugate Gradient Method
,”
Int. J. Heat Mass Transfer
,
43
(
17
), pp.
3171
3181
.
14.
Huang
,
C. H.
, and
Tsai
,
Y. L.
,
2005
, “
A Transient 3-D Inverse Problem in Imaging the Time-Dependent Local Heat Transfer Coefficients for Plate Fin
,”
Appl. Therm. Eng.
,
25
(
14–15
), pp.
2478
2495
.
15.
Lu
,
T.
,
Liu
,
B.
, and
Jiang
,
P. X.
,
2011
, “
Inverse Estimation of the Inner Wall Temperature Fluctuations in a Pipe Elbow
,”
Appl. Therm. Eng.
,
31
(
11–12
), pp.
1976
1982
.
16.
Ioka
,
S.
,
Kubo
,
S.
,
Ochi
,
M.
, and
Hojo
,
K.
,
2013
, “
Development of Inverse Analysis of Heat Conduction and Thermal Stress for Elbow: Part I
,”
ASME
Paper No. PVP2013-97883.
17.
Mistubishi Heavy Industries, Ltd.
,
Tokyo
,
Internal
Report.
18.
JSME
,
2009
,
JSME Data Book: Heat Transfer
,
5th ed.
,
The Japan Society of Mechanical Engineers
,
Tokyo
.
You do not currently have access to this content.