In this paper, analytical solution for time-dependent electro–magneto–thermoelastic stresses of a hollow sphere made of a fluid-saturated functionally graded porous piezoelectric material (FGPPM) is presented. All material properties, except Poisson's ratio, vary through the radial direction of the FGPPM spherical structure according to a simple power-law. The general form of thermal, mechanical, and electric potential boundary conditions is considered on the internal and external surfaces of the sphere, and the sphere is under constant electrical and magnetic fields. Stress–strain and strain–displacement relations are used to obtain stress–displacement equations, and then by putting stress–displacement equations in the equilibrium equation, Navier equation is acquired. The homogenous differential heat conduction equation is solved. The nonhomogenous differential Navier equation is solved for two cases. At first, creep strains are ignored and the initial electro–magneto–thermoelastic stresses are obtained. Then considering creep strains singly, the creep stress rates are obtained. Finally, time-dependent creep stress distributions at any time ti are attained.

References

References
1.
Qin
,
Q.-H.
,
2001
,
Fracture Mechanics of Piezoelectric Materials
,
WIT
,
Southampton, UK
.
2.
Takeuti
,
Y.
, and
Tanigawa
,
Y.
,
1982
, “
Transient Thermal Stresses of a Hollow Sphere Due to Rotating Heat Source
,”
J. Therm. Stresses
,
5
(3–4), pp.
283
298
.
3.
Obata
,
Y.
, and
Noda
,
N.
,
1994
, “
Steady Thermal Stress in a Hollow Circular Cylinder and a Hollow Sphere of Functionally Gradient Materials
,”
J. Therm. Stresses
,
17
(3), pp.
471
487
.
4.
Zimmerman
,
R. W.
, and
Lutz
,
M. P.
,
1996
, “
Thermal Stresses and Effective Thermal Expansion Coefficient of Functionally Graded Sphere
,”
J. Therm. Stresses
,
19
(1), pp.
39
54
.
5.
Jabbari
,
M.
,
Sohrabpourb
,
S.
, and
Eslami
,
M. R.
,
2002
. “
Mechanical and Thermal Stresses in A Functionally Graded Hollow Cylinder Due to Radially Symmetric Loads
,”
Int. J. Pressure Vessels Piping
,
79
(
7
), pp.
493
497
.
6.
Eslami
,
M. R.
,
Babaei
,
M. H.
, and
Poultangari
,
R.
,
2005
, “
Thermal and Mechanical Stresses in a Functionally Graded Thick Sphere
,”
Int. J. Pressure Vessels Piping
,
82
(
7
), pp.
522
527
.
7.
Ding
,
H. J.
, and
Chen
,
W. Q.
,
2001
,
Three Dimensional Problems of Piezoelasticity
,
Nova Science
,
New York
.
8.
Sinha
,
D. K.
,
1962
, “
Note on the Radial Deformation of a Piezoelectric, Polarized Spherical Shell With a Symmetrical Distribution
,”
J. Acoust. Soc. Am.
,
34
(
8
), pp.
1073
1075
.
9.
Shul'ga
,
N. A.
,
1990
, “
Radial Electroelastic Vibrations of a Hollow Piezoceramic Sphere
,”
Soviet Appl. Mech.
,
26
(8), pp.
731
734
.
10.
Chen
,
W. Q.
, and
Shioya
,
T.
,
2001
, “
Piezothermoelastic Behavior of a Pyroelectric Spherical Shell
,”
J. Therm. Stresses
,
24
(2), pp.
105
120
.
11.
Wu
,
C. C. M.
,
Kahn
,
M.
, and
Moy
,
W.
,
1996
, “
Piezoelectric Ceramics With Functionally Gradients: A New Application in Material Design
,”
J. Am. Ceram. Soc.
,
79
(3), pp.
809
812
.
12.
Shelley
,
W. F.
,
Wan
,
S.
, and
Bowman
,
K. J.
,
1999
, “
Functionally Graded Piezoelectric Ceramics
,”
Mater. Sci. Forum
,
308–311
, pp.
515
520
.
13.
Zhu
,
X. H.
,
Zu
,
J.
,
Meng
,
Z. Y.
,
Zhu
,
J. M.
,
Zhou
,
S. H.
,
Li
,
Q.
,
Liu
,
Z.
, and
Ming
,
N.
,
2000
, “
Micro Displacement Characteristics and Microstructures of Functionally Graded Piezoelectric Ceramic Actuator
,”
Mater. Des.
,
21
(
6
), pp.
561
566
.
14.
Chen
,
W. Q.
,
Lu
,
Y.
,
Ye
,
G. R.
, and
Cai
,
J. B.
,
2002
, “
3D Electroelastic Fields in a Functionally Graded Piezoceramic Hollow Sphere Under Mechanical and Electric Loadings
,”
Arch. Appl. Mech.
,
72
(
1
), pp.
39
51
.
15.
Dai
,
H. L.
, and
Wang
,
X.
,
2005
, “
Stress Wave Propagation in Laminated Piezoelectric Spherical Shells Under Thermal Shock and Electric Excitation
,”
Eur. J. Mech. A/Solids
,
24
(
2
), pp.
263
276
.
16.
Dai
,
H. L.
, and
Wang
,
X.
,
2005
, “
Thermo-Electro-Elastic Transient Responses in Piezoelectric Hollow Structures
,”
Int. J. Solids Struct.
,
42
(3–4), pp.
1151
1171
.
17.
Ootao
,
Y.
, and
Tanigawa
,
Y.
,
2007
, “
Transient Piezothermoelastic Analysis for a Functionally Graded Thermopiezoelectric Hollow Sphere
,”
Compos. Struct.
,
81
(
4
), pp.
540
549
.
18.
Ben Salah
,
I.
,
Njeh
,
A.
, and
Ben Ghozlen
,
M. H.
,
2012
, “
A Theoretical Study of the Propagation of Rayleigh Waves in a Functionally Graded Piezoelectric Material (FGPM)
,”
Mater. Sci. Eng.
,
52
(2), pp.
306
314
.
19.
Bowen
,
C. R.
,
Perry
,
A.
,
Lewis
,
A. C. F.
, and
Kara
,
H.
,
2004
, “
Processing and Properties of Porous Piezoelectric Materials With High Hydrostatic Figures of Merit
,”
J. Eur. Ceram. Soc.
,
24
(
2
), pp.
541
545
.
20.
Chen
,
W. Q.
,
Ding
,
H. J.
, and
Xu
,
R. Q.
,
2001
, “
Three-Dimensional Free Vibration Analysis of a Fluid-Filled Piezoceramic Hollow Sphere
,”
Comput. Struct.
,
79
(
6
), pp.
653
663
.
21.
Jabbari
,
M.
,
Karampour
,
S.
, and
Eslami
,
M. R.
,
2011
, “
Radially Symmetric Steady State Thermal and Mechanical Stresses of a Poro FGM Hollow Sphere
,”
ISRN Mech. Eng.
,
2011
, p.
305402
.
22.
Jabbari
,
M.
,
Karampour
,
S.
, and
Eslami
,
M. R.
,
2013
, “
Steady State Thermal and Mechanical Stresses of a Poro-Piezo-FGM Hollow Sphere
,”
Meccanica
,
48
(
3
), pp.
699
719
.
23.
Finnie
,
I.
, and
Heller
,
W. R.
,
1959
,
Creep of Engineering Materials
,
McGraw-Hill
,
New York
.
24.
Yang
,
Y. Y.
,
2000
, “
Time-Dependent Stress Analysis in Functionally Graded Material
,”
Int. J. Solids Struct.
,
37
(
51
), pp.
7593
7608
.
25.
Rangaraj
,
S.
, and
Kokini
,
K.
,
2002
, “
Time-Dependent Behavior of Ceramic-Metal Particulate Composites
,”
Mech. Time-Dependent Mater.
,
6
(
2
), pp.
171
191
.
26.
Chen
,
J. J.
,
Tu
,
S. H.
,
Xuan
,
Z. H.
, and
Wang
,
Z. H.
,
2006
, “
Creep Analysis for a Functionally Graded Cylinder Subjected to Internal and External Pressure
,”
J. Strain Anal.
,
42
(2), pp.
69
77
.
27.
Dai
,
H. L.
, and
Fu
,
Y. M.
,
2007
, “
Magnetothermoelastic Interactions in Hollow Structures of Functionally Graded Material Subjected to Mechanical Load
,”
Int. J. Pressure Vessels Piping
,
84
(
3
), pp.
132
138
.
28.
Arani
,
A. G.
,
Salari
,
M.
,
Khademizadeh
,
H.
, and
Arefmanesh
,
A.
,
2009
, “
Magnetothermoelastic Transient Response of a Functionally Graded Thick Hollow Sphere Subjected to Magnetic and Thermoelastic Fields
,”
Arch. Appl. Mech.
,
79
, pp.
481
497
.
29.
Loghman
,
A.
,
Ghorbanpour Arani
,
A.
,
Amir
,
S.
, and
Vajedi
,
A.
,
2010
, “
Magnetothermoelastic Creep Analysis of Functionally Graded Cylinders
,”
Int. J. Pressure Vessels Piping
,
87
(
7
), pp.
389
395
.
30.
Loghman
,
A.
,
Ghorbanpour
,
A. A.
, and
Aleayoub
,
S. M. A.
,
2011
, “
Time-Dependent Creep Stress Redistribution Analysis of Functionally Graded Spheres
,”
Mech. Time-Dependent Mater.
,
15
(
4
), pp.
353
365
.
31.
Loghman
,
A.
,
Aleayoub
,
S. M. A.
, and
Sadi
,
M. H.
,
2012
, “
Time-Dependent Magnetothermoelastic Creep Modeling of FGM Spheres Using Method of Successive Elastic Solution
,”
Appl. Math. Model.
,
36
(
2
), pp.
836
845
.
32.
Dai
,
H. L.
,
Jiang
,
H. J.
, and
Yang
,
L.
,
2012
, “
Time-Dependent Behaviors of a FGPM Hollow Sphere Under the Coupling of Multi-Fields
,”
Solid State Sci.
,
14
(
5
), pp.
587
597
.
33.
Dai
,
H. L.
,
Fu
,
Y. M.
, and
Yang
,
J. H.
,
2007
, “
Electromagnetoelastic Behaviors of Functionally Graded Piezoelectric Solid Cylinder and Sphere
,”
Acta Mech. Sin.
,
23
(
1
), pp.
55
63
.
34.
Hetnarski
,
R. B.
, and
Eslami
,
M. R.
,
1999
,
Thermal Stresses—Advanced Theory and Applications
,
Springer
, New York.
35.
Mendelson
,
A.
,
1968
,
Plasticity Theory and Applications
,
Macmillan
,
New York
.
You do not currently have access to this content.