The accurate assessment of creep–fatigue interaction is an important issue for industrial components operating with large cyclic thermal and mechanical loads. An extensive review of different aspects of creep fatigue interaction is proposed in this paper. The introduction of a high temperature creep dwell within the loading cycle has relevant impact on the structural behavior. Different mechanisms can occur, including the cyclically enhanced creep, the creep enhanced plasticity and creep ratchetting due to the creep fatigue interaction. A series of crucial parameters for crack initiation assessment can be identified, such as the start of dwell stress, the creep strain, and the total strain range. A comparison between the ASME NH and R5 is proposed, and the principal differences in calculating the aforementioned parameters are outlined. The linear matching method (LMM) framework is also presented and reviewed, as a direct method capable of calculating these parameters and assessing also the steady state cycle response due to creep and cyclic plasticity interaction. Two numerical examples are presented, the first one is a cruciform weldment subjected to cyclic bending moment and uniform high temperature with different dwell times. The second numerical example considers creep fatigue response on a long fiber reinforced metal matrix composite (MMC), which is subjected to a cycling uniform thermal field and a constant transverse mechanical load. All the results demonstrate that the LMM is capable of providing accurate solutions, and also relaxing the conservatisms of the design codes. Furthermore, as a direct method, it is more efficient than standard inelastic incremental finite element analysis.

References

References
1.
Weitzel
,
P.
,
2011
, “
Steam Generator for Advanced Ultra-Supercritical Power Plants 700 to 760C
,”
ASME
Paper No. POWER2011-55039.
2.
Starr
,
F.
,
2014
, “
3—High Temperature Materials Issues in the Design and Operation of Coal-Fired Steam Turbines and Plant
,”
Structural Alloys for Power Plants
,
A.
Shirzadi
, and
S.
Jackson
, eds.,
Woodhead Publishing
, Sawston, Cambridge, UK, pp.
36
68
.
3.
O'Donnell
,
M. P.
,
Bradford
,
R.
,
Dean
,
D. W.
,
Hamm
,
C. D.
, and
Chevalier
,
M.
,
2011
, “
High Temperature Issues in Advanced Gas Cooled Reactors (AGR),
” TAGSI/FESI Symposium: Structural Integrity of Nuclear Power Plant, Abington, UK, Apr. 9–10, The Welding Institute, Cambridge, 2013, EMAS Publishing.
4.
Ponter
,
A. R. S.
, and
Chen
,
H.
,
2001
, “
A Minimum Theorem for Cyclic Load in Excess of Shakedown, With Application to the Evaluation of a Ratchet Limit
,”
Eur. J. Mech. A/Solids
,
20
(
4
), pp.
539
553
.
5.
Chen
,
H. F.
, and
Ponter
,
A. R. S.
,
2001
, “
Shakedown and Limit Analyses for 3-D Structures Using the Linear Matching Method
,”
Int. J. Pressure Vessels Piping
,
78
(
6
), pp.
443
451
.
6.
Chen
,
H.
, and
Ponter
,
A. R. S.
,
2009
, “
Structural Integrity Assessment of Superheater Outlet Penetration Tubeplate
,”
Int. J. Pressure Vessels Piping
,
86
(
7
), pp.
412
419
.
7.
Lytwyn
,
M.
,
Chen
,
H.
,
Martin
,
M.
,
Lytwyn
,
M.
,
Chen
,
H.
, and
Martin
,
M.
,
2015
, “
Comparison of the Linear Matching Method to Rolls Royce's Hierarchical Finite Element Framework for Ratchet Limit Analysis
,”
Int. J. Pressure Vessels Piping
,
125
, pp.
13
22
.
8.
Ure
,
J.
,
Chen
,
H.
, and
Tipping
,
D.
,
2014
, “
Integrated Structural Analysis Tool Using the Linear Matching Method Part 1—Software Development
,”
Int. J. Press. Ves. Piping
,
120–121
, pp.
141
151
.
9.
Chen
,
H.
,
2010
, “
Lower and Upper Bound Shakedown Analysis of Structures With Temperature-Dependent Yield Stress
,”
ASME J. Pressure Vessel Technol.
,
132
(
1
), p.
011202
.
10.
Chen
,
H. F.
,
Engelhardt
,
M. J.
, and
Ponter
,
A. R. S.
,
2003
, “
Linear Matching Method for Creep Rupture Assessment
,”
Int. J. Pressure Vessels Piping
,
80
(
4
), pp.
213
220
.
11.
Chen
,
H. F.
,
Ponter
,
A. R. S.
, and
Ainsworth
,
R. A.
,
2006
, “
The Linear Matching Method Applied to the High Temperature Life Integrity of Structures. Part 1. Assessments Involving Constant Residual Stress Fields
,”
Int. J. Pressure Vessels Piping
,
83
(
2
), pp.
123
135
.
12.
Gorash
,
Y.
, and
Chen
,
H.
,
2013
, “
Creep–Fatigue Life Assessment of Cruciform Weldments Using the Linear Matching Method
,”
Int. J. Pressure Vessels Piping
,
104
, pp.
1
13
.
13.
Gorash
,
Y.
, and
Chen
,
H.
,
2013
, “
On Creep–Fatigue Endurance of TIG-Dressed Weldments Using the Linear Matching Method
,”
Eng. Failure Anal.
,
34
, pp.
308
323
.
14.
Gorash
,
Y.
, and
Chen
,
H.
,
2013
, “
A Parametric Study on Creep–Fatigue Endurance of Welded Joints
,”
Proc. Appl. Math. Mech.
,
13
(
1
), pp.
73
74
.
15.
Chen
,
H.
,
Chen
,
W.
, and
Ure
,
J.
,
2014
, “
A Direct Method on the Evaluation of Cyclic Steady State of Structures With Creep Effect
,”
ASME J. Pressure Vessel Technol.
,
136
(
6
), p.
061404
.
16.
Hales
,
R.
,
1980
, “
A Quantitative Metallographic Assessment of Structural Degradation of Type 316 Stainless Steel During Creep–Fatigue
,”
Fatigue Fract. Eng. Mater. Struct.
,
3
(
4
), pp.
339
356
.
17.
Yan
,
X.-L.
,
Zhang
,
X.-C.
,
Tu
,
S.-T.
,
Mannan
,
S.-L.
,
Xuan
,
F.-Z.
, and
Lin
,
Y.-C.
,
2015
, “
Review of Creep–Fatigue Endurance and Life Prediction of 316 Stainless Steels
,”
Int. J. Pressure Vessels Piping
,
126–127
, pp.
17
28
.
18.
Miller
,
D.
,
Priest
,
R.
, and
Ellison
,
E.
,
1984
, “
A Review of Material Response and Life Prediction Techniques Under Fatigue–Creep Loading Conditions
,”
High Temp. Mater. Processes
,
6
(
3–4
), pp.
155
194
.
19.
Plumbridge
,
W.
,
1987
, “
Metallography of High Temperature Fatigue
,”
High Temperature Fatigue
,
Springer
, Dordrecht, pp.
177
228
.
20.
Kobayashi
,
M.
,
Ohno
,
N.
, and
Igari
,
T.
,
1998
, “
Ratchetting Characteristics of 316FR Steel at High Temperature, Part II: Analysis of Thermal Ratchetting Induced by Spatial Variation of Temperature
,”
Int. J. Plast.
,
14
(
4–5
), pp.
373
390
.
21.
Ohno
,
N.
,
Abdel-Karim
,
M.
,
Kobayashi
,
M.
, and
Igari
,
T.
,
1998
, “
Ratchetting Characteristics of 316FR Steel at High Temperature, Part I: Strain-Controlled Ratchetting Experiments and Simulations
,”
Int. J. Plast.
,
14
(
4–5
), pp.
355
372
.
22.
Bree
,
J.
,
1967
, “
Elastic–Plastic Behaviour of Thin Tubes Subjected to Internal Pressure and Intermittent High-Heat Fluxes With Application to Fast-Nuclear-Reactor Fuel Elements
,”
J. Strain Anal. Eng. Des.
,
2
(
3
), pp.
226
238
.
23.
Bree
,
J.
,
1968
, “
Incremental Growth Due to Creep and Plastic Yielding of Thin Tubes Subjected to Internal Pressure and Cyclic Thermal Stresses
,”
J. Strain Anal. Eng. Des.
,
3
(
2
), pp.
122
127
.
24.
American Society of Mechanical Engineers
,
2007
,
ASME Boiler & Pressure Vessel Code: An International Code
,
ASME
,
New York
.
25.
Ainsworth
,
R.
,
2003
,
R5: Assessment Procedure for the High Temperature Response of Structures
,
British Energy Generation
, Barnwood, UK.
26.
Kapoor
,
A.
,
1994
, “
A Re-Evaluation of the Life to Rupture of Ductile Metals by Cyclic Plastic Strain
,”
Fatigue Fract. Eng. Mater. Struct.
,
17
(
2
), pp.
201
219
.
27.
Weiß
,
E.
,
Postberg
,
B.
,
Nicak
,
T.
, and
Rudolph
,
J.
,
2004
, “
Simulation of Ratcheting and Low Cycle Fatigue
,”
Int. J. Pressure Vessels Piping
,
81
(
3
), pp.
235
242
.
28.
Skelton
,
R. P.
, and
Gandy
,
D.
,
2008
, “
Creep—Fatigue Damage Accumulation and Interaction Diagram Based on Metallographic Interpretation of Mechanisms
,”
Mater. High Temp.
,
25
(
1
), pp.
27
54
.
29.
Jetter
,
R. I.
,
2002
,
Subsection NH-Class 1 Components in Elevated Temperature Service
,
American Society of Mechanical Engineers
,
New York
, pp.
369
404
.
30.
Sheridan
,
M.
,
Knowles
,
D.
, and
Montgomery
,
O.
,
2013
, “
Comparison of R5 and ASME NH Creep–Fatigue Damage Assessment Methodologies
,”
ASME
Paper No. PVP2013-97625.
31.
Spindler
,
M. W.
,
2007
, “
An Improved Method for Calculation of Creep Damage During Creep–Fatigue Cycling
,”
Mater. Sci. Technol.
,
23
(
12
), pp.
1461
1470
.
32.
Spindler
,
M.
,
2005
, “
The Prediction of Creep Damage in Type 347 Weld Metal. Part I: The Determination of Material Properties From Creep and Tensile Tests
,”
Int. J. Pressure Vessels Piping
,
82
(
3
), pp.
175
184
.
33.
Spindler
,
M. W.
,
2005
, “
The Prediction of Creep Damage in Type 347 Weld Metal: Part II Creep Fatigue Tests
,”
Int. J. Pressure Vessels Piping
,
82
(
3
), pp.
185
194
.
34.
Chen
,
H. F.
,
Ponter
,
A. R. S.
, and
Ainsworth
,
R. A.
,
2006
, “
The Linear Matching Method Applied to the High Temperature Life Integrity of Structures. Part 2. Assessments Beyond Shakedown Involving Changing Residual Stress Fields
,”
Int. J. Pressure Vessels Piping
,
83
(
2
), pp.
136
147
.
35.
Manson
,
S.
, and
Halford
,
G. R.
,
2009
,
Fatigue and Durability of Metals at High Temperatures
,
ASM International
, Materials Park, OH.
36.
Barbera
,
D.
,
Chen
,
H.
, and
Liu
,
Y.
,
2015
, “
On the Creep Fatigue Behaviour of Metal Matrix Composites
,”
International Conference on Pressure Vessel Technology
(ICPVT-14),
Shangai, Sept. 23-25, Paper No. A0076
.
You do not currently have access to this content.