This paper presents a critical comparison of the traditional strength criteria and the modern plastic flow criteria used in the structural design and integrity assessment of pressure vessels. This includes (1) a brief review of the traditional strength criteria used in the ASME Boiler and Pressure Vessel (B&PV) Code, (2) a discussion of the shortcomings of the traditional strength criteria when used to predict the burst pressure of pressure vessels, (3) an analysis of challenges, technical gaps, and basic needs to improve the traditional strength criteria, (4) a comparison of strength theories and plasticity theories for ductile materials, (5) an evaluation of available plastic flow criteria and their drawbacks in prediction of burst pressure of pressure vessels, (6) a description of a newly developed multiaxial yield criterion and its application to pressure vessels, and (7) a demonstration of experimental validation of the new plastic flow criterion when used to predict the burst pressure of thin-wall pressure vessels. Finally, recommendations are made for further study to improve the traditional strength design criteria and to facilitate utilization of the modern plastic flow criteria for pressure vessel design and analysis.

References

References
1.
ASME
,
2010
,
ASME Boiler and Pressure Vessel Code
,
American Society of Mechanical Engineers
,
New York
.
2.
Witkin
,
D. E.
, and
Mraz
,
G. J.
,
1976
, “
Design Philosophy of Pressure Vessels for Service Above 10 ksi (70 MPa)
,”
ASME J. Pressure Vessel Technol.
,
98
(
4
), pp.
266
275
.
3.
Bernstein
,
M. D.
,
1988
, “
Design Criteria for Boilers and Pressure Vessels in the USA
,”
ASME J. Pressure Vessel Technol.
,
110
(
4
), pp.
430
443
.
4.
Spence
,
J.
, and
Nash
,
D. H.
,
2004
, “
Milestones in Pressure Vessel Technology
,”
Int. J. Pressure Vessels Piping
,
81
(
2
), pp.
89
118
.
5.
Hasegawa
,
K.
,
Isomura
,
T.
,
Kajimura
,
Y.
,
Asada
,
Y.
, and
Karasawa
,
T.
,
2009
, “
Recent Development of Codes and Standards of Boiler and Pressure Vessels in Japan
,”
Companion Guide to the ASME Boiler and Pressure Vessel Code
, Vol.
3
,
American Society of Mechanical Engineers
,
New York
, pp.
257
308
.
6.
Harvey
,
J. F.
,
1985
,
Theory and Design of Pressure Vessels
,
Van Norstrand Reinhold Company
,
New York
.
7.
Chattopadhyay
,
S.
,
2005
,
Pressure Vessels Design and Practice
,
CRC Press
,
Boca Raton, FL
.
8.
Christopher
,
T.
,
Sarma
,
B. S.
,
Potti
,
P. K.
,
Rao
,
B. N.
, and
Sankar
,
K.
,
2002
, “
A Comparative Study on Failure Pressure Estimation of Unflawed Cylindrical Vessels
,”
Int. J. Pressure Vessels Piping
,
79
(
1
), pp.
53
66
.
9.
Dwivedi
,
N.
, and
Kumar
,
V.
,
2012
, “
A Review on Burst Pressure Prediction of Pressure Vessel
,”
Int. J. Mech. Automob. Prod. Eng.
,
2
, pp.
304
306
.
10.
Law
,
M.
, and
Bowie
,
G.
,
2007
, “
Prediction of Failure Strain and Burst Pressure in High Yield-to-Tensile Strength Ratio Linepipe
,”
Int. J. Pressure Vessels Piping
,
84
(
8
), pp.
487
492
.
11.
Zhu
,
X. K.
, and
Leis
,
B. N.
,
2012
, “
Evaluation of Burst Pressure Prediction Models for Line Pipes
,”
Int. J. Pressure Vessels Piping
,
89
, pp.
85
97
.
12.
On-Line Resources
,
2008
, “
Review of the ASME Code Section VIII Division 2—2007: As It Affects API Specifications
,”
American Petroleum Institute
, Washington, DC, Report No. 0723A.
13.
ABAQUS
,
2013
, “
Analysis User's Manual
,”
Dassault Systémes Simulia Corporation
,
Providence, RI
, ABAQUS Standard Version 6.12-2.
14.
Stonehouse
,
M.
,
Seipp
,
T. G.
,
Kanamaru
,
S.
, and
Morrison
,
S.
,
2012
, “
A Novel Comparison of Design-by-Analysis Methods
,”
ASME J. Pressure Vessel Technol.
,
134
(
5
), p.
054502
.
15.
Liu
,
P. F.
,
Zheng
,
J. Y.
,
Ma
,
L.
,
Miao
,
C. J.
, and
Wu
,
L. L.
,
2008
, “
Calculations of Plastic Collapse Load of Pressure Vessel Using FEA
,”
J. Zhejiang Univ. Sci. A
,
9
(
7
), pp.
900
906
.
16.
Dwivedi
,
N.
, and
Kumar
,
V.
,
2012
, “
Burst Pressure Prediction of Pressure Vessel Using FEA
,”
Int. J. Eng. Res. Technol.
,
1
(
7
), pp.
1
5
.
17.
Chaaba
,
A.
,
2010
, “
Plastic Collapse Assessment of Thick Vessels Under Internal Pressure According to Various Hardening Rules
,”
ASME J. Pressure Vessel Technol.
,
132
(
5
), p.
051207
.
18.
Rohart
,
P.
,
Panier
,
S.
,
Simonet
,
Y.
,
Hariri
,
S.
, and
Afzali
,
M.
,
2015
, “
A Review of State-of-the-Art Methods for Pressure Vessels Design Against Progressive Deformation
,”
ASME J. Pressure Vessel Technol.
,
137
(
5
), p.
051202
.
19.
Abdalla
,
H. F.
,
Meghed
,
M. M.
, and
Younan
,
Y. A.
,
2011
, “
Shakedown Limit Loads for 90 Degree Scheduled Pipe Bends Subjected to Steady Internal Pressure and Cyclic Bending Moments
,”
ASME J. Pressure Vessel Technol.
,
133
(
3
), p.
031207
.
20.
Zhu
,
X. K.
, and
Leis
,
B. N.
,
2006
, “
Average Shear Stress Yield Criterion and Its Application to Plastic Collapse Analysis of Pipelines
,”
Int. J. Pressure Vessels Piping
,
83
(
9
), pp.
663
671
.
21.
Cooper
,
W. E.
,
1957
, “
The Significance of the Tensile Test to Pressure Vessel Design
,”
Weld. J.
,
36
, pp.
49s
56s
.
22.
Svensson
,
N. L.
,
1958
, “
The Bursting Pressure of Cylindrical and Spherical Vessels
,”
ASME J. Appl. Mech.
,
25
(
1
), pp.
89
96
.
23.
Stewart
,
G.
, and
Klever
,
F. J.
,
1994
, “
An Analytical Model to Predict the Burst Capacity of Pipelines
,”
International Conference of Offshore Mechanics and Arctic Engineering
, Houston, TX, Feb. 27–Mar. 3, Vol.
5
—Pipeline Technology, pp. 177–188.
24.
Klever
,
F. J.
,
1992
, “
Burst Strength of Corroded Pipe: Flow Stress Revisited
,”
24th Offshore Technology Conference
(
OTC
), Houston, TX, May 4–7, Paper No. OTC07029.
25.
Klever
,
F. J.
, and
Steward
,
G.
,
1998
, “
Analytical Burst Pressure Prediction of OCTG With and Without Defects
,”
SPE
Applied Technology Workshop on Risk Based Design of Well Casing and Tubing, The Woodlands, TX, May 7–8, Paper No. SPE48329.
26.
Zhu
,
X. K.
, and
Leis
,
B. N.
,
2004
, “
Accurate Prediction of Burst Pressure for Linepipes
,”
J. Pipeline Integr.
,
4
, pp.
195
206
.
27.
Zhu
,
X. K.
, and
Leis
,
B. N.
,
2007
, “
Theoretical and Numerical Predictions of Burst Pressure of Pipelines
,”
ASME J. Pressure Vessel Technol.
,
129
(
4
), pp.
644
652
.
28.
Riks
,
E.
,
1979
, “
An Incremental Approach to the Solution of Snapping and Buckling Problems
,”
Int. J. Solids Struct.
,
15
(
7
), pp.
529
551
.
29.
Crisfield
,
M. A.
,
1981
, “
A Fast Incremental/Iteration Solution Procedure That Handles ‘Snap-Through’
,”
Comput. Struct.
,
13
(
1–3
), pp.
55
62
.
30.
Lode
,
W.
,
1926
, “
Versuche über den Einfluß der Mittleren Hauptspannung auf das Fließen der Metalle Eisen, Kupfer und Nickel
,”
Z. Phys.
,
36
(
11–12
), pp.
913
939
.
31.
Lessels
,
J. M.
, and
MacGregor
,
C. W.
,
1940
, “
Combined Stress Experiments on a Nickel–Chrome–Molybdenum Steel
,”
J. Franklin Inst.
,
230
(
2
), pp.
163
180
.
32.
Davis
,
E. A.
,
1945
, “
Yielding and Fracture of Medium-Carbon Steel Under Combined Stress
,”
ASME J. Appl. Mech.
,
67
, pp.
13
24
.
33.
Marin
,
J.
, and
Hu
,
L. W.
,
1956
, “
Biaxial Plastic Stress–Strain Relations of a Mild Steel for Variable Stress Ratios
,”
ASME J. Appl. Mech.
,
78
, pp.
499
509
.
34.
Ros
,
M.
, and
Eichinger
,
A.
,
1929
, “
Versuche zur Klaerung der Frage der Bruchefahr III, Mettalle, Eidgenoss
,”
Material pruf. Und Versuchsantalt Industriell Bauwerk und Geerbe
, Vol.
34
,
Diskussionsbericht
,
Zurich
, pp.
3
59
.
35.
Maxey
,
W. A.
,
1974
, “
Measurement of Yield Strength in the Mill Expander
,”
5th Symposium on Line Pipe Research
, Houston, TX, Nov. 20–22, pp.
N1
N32
.
36.
Zhu
,
X. K.
, and
Leis
,
B. N.
,
2005
, “
Influence of Yield-to-Tensile Strength Ratio on Failure Assessment of Corroded Pipelines
,”
ASME J. Pressure Vessel Technol.
,
127
(
4
), pp.
436
442
.
37.
Ocejo
,
J. R.
, and
Gutierrez-Solana
,
F.
,
1998
, “
On the Strain Hardening Exponent Definition and Its Influence With SINTAP
,” University of Cantabria, Cantabria, Spain, Report No. SINTAP/UC/07.
38.
Ramberg
,
W.
, and
Osgood
,
W. R.
,
1941
, “
Description of Stress–Strain Curves by Three Parameters
,” National Advisory Committee for Aeronautics, Technical Note No. 902.
39.
Rasmussen
,
K.
,
2001
, “
Full-Range Stress–Strain Curves for Stainless Steel Alloys
,” Department of Civil Engineering, The University of Sydney, Sydney, Australia, Research Report No. R811.
40.
Zhang
,
W.
,
Wu
,
J.
,
Wen
,
Y.
,
Ye
,
J.
, and
Li
,
N.
,
2010
, “
Characterization of Different Work Hardening Behavior in AISI 321 Stainless Steel and Hadfield Steel
,”
J. Mater. Sci.
,
45
(
13
), pp.
3433
3437
.
41.
Chen
,
G.
, and
Deng
,
Y. C.
,
2011
, “
Load Bearing Capacity and Safety Analysis for Strain-Hardening Austenitic Stainless Steel Pressure Vessels
,”
Chin. J. Mech. Eng.
,
24
(
2
), pp.
1
8
.
42.
Zheng
,
J. Y.
,
Miao
,
C.
,
Li
,
Y.
,
Cu
,
P.
,
Ma
,
L.
, and
Guo
,
A.
,
2012
, “
Investigation on Influence Factors of Mechanical Properties of Austenitic Stainless Steels for Cold Stretched Pressure Vessels
,”
ASME J. Pressure Vessel Technol.
,
134
(
6
), p.
061407
.
43.
Zimmermann
,
S.
,
Marewski
,
U.
, and
Hohler
,
S.
,
2007
, “
Burst Pressure of Flawless Pipes
,”
3R Int., Spec. Ed.
,
46
, pp.
28
33
.
44.
Zhou
,
W.
, and
Huang
,
T.
,
2012
, “
Model Error Assessment of Burst Capacity Models for Defect-Free Pipes
,”
ASME
Paper No. IPC2012-90334.
45.
Bony
,
M.
,
Alamilla
,
J. L.
,
Vai
,
R.
, and
Flores
,
E.
,
2010
, “
Failure Pressure in Corroded Pipelines Based on Equivalent Solutions for Undamaged Pipe
,”
ASME J. Pressure Vessel Technol.
,
132
(
5
), p.
051001
.
46.
Alamilla
,
J. L.
,
Sosa
,
E.
,
Sanchez-Magana
,
C. A.
,
Andarde-Valencia
,
R.
, and
Contreras
,
A.
,
2013
, “
Failure Analysis and Mechanical Performance of an Oil Pipeline
,”
Mater. Des.
,
50
, pp.
766
773
.
47.
Li
,
Y.
,
Zhao
,
H.
,
Zhu
,
Q.
, and
Cao
,
X. Y.
,
2015
, “
Unified Solution of Burst Pressure for Defect-Free Thin Walled Elbows
,”
ASME J. Pressure Vessel Technol.
,
137
(
2
), p.
021203
.
48.
Zhu
,
X. K.
,
2015
, “
Corrosion Assessment Methods for Pipelines With Long Blunt Defects
,”
J. Pipeline Eng.
,
14
, pp.
111
120
.
49.
Zhu
,
X. K.
, and
Leis
,
B. N.
,
2010
, “
Effect of Axial Tensile Strain on Yield Load-Carrying Capacity of Pipelines
,”
ASME
Paper No. IPC2010-31582.
50.
Zhu
,
X. K.
,
2015
, “
A New Material Failure Criterion for Numerical Simulation of Burst Pressure of Corrosion Defects in Pipelines
,”
ASME
Paper No. PVP2015-45713.
51.
Brabin
,
T. A.
,
Christopher
,
T.
, and
Rao
,
B. N.
,
2011
, “
Bursting Pressure of Mild Steel Cylindrical Vessels
,”
Int. J. Pressure Vessels Piping
,
88
(
2–3
), pp.
119
122
.
52.
Wang
,
L.
, and
Zhang
,
Y.
,
2011
, “
Plastic Collapse Analysis of Thin-Walled Pipes Based on Uniform Yield Criterion
,”
Int. J. Mech. Sci.
,
53
, pp.
348
354
.
53.
Chen
,
Z.
,
Zhu
,
W.
,
Di
,
Q.
, and
Wang
,
W.
,
2015
, “
Prediction of Burst Pressure of Pipes With Geometric Eccentricity
,”
ASME J. Pressure Vessel Technol.
,
137
(
6
), p.
061201
.
You do not currently have access to this content.