This paper presents the behavior of pressure in an air–water shock tube. In this work, high-pressure air (at 100 bar) interacts with water (at 1 atm ∼ 1 bar) through an orifice in a 100 mm constant diameter tube. The experiments are repeated with three different orifice plate diameters of 4, 8, and 15 mm. The variation of pressure during the transient stage is recorded in these experiments and it is found that with increasing orifice diameter, the amplitude of the pressure increases linearly with time when all other conditions are unchanged. The same phenomenon is simulated using the ls-dyna® software using an arbitrary Lagrangian Eulerian (ALE) method to solve the problem numerically. Simulations are made with a range of orifice diameters. The experimental results confirm the validity of the simulations algorithm. The simulations also demonstrated that the pressure behaves linearly with orifice diameter only when orifice diameter is less than 15% of the tube diameter.

References

References
1.
Khawaja
,
H. A.
,
Kapaya
,
J.
, and
Moatamedi
,
M.
,
2015
,
Shock Tube; Detail Overview of Equipment and Instruments in the Shock Tube Experimental Setup
,
Lambert Academic Publishing
,
Saarbrücken, Germany
.
2.
Ji
,
H.
,
Mustafa
,
M.
,
Khawaja
,
H.
,
Ewan
,
B.
, and
Moatamedi
,
M.
,
2014
, “
Design of Water Shock Tube for Testing Shell Materials
,”
World J. Eng.
,
11
(
1
), pp.
55
60
.
3.
Khawaja
,
H. A.
, and
Moatamedi
,
M.
,
2013
, “
Multiphysics Investigation of Composite Shell Structures Subjected to Water Shock Wave Impact in Petroleum Industry
,”
Mater. Sci. Forum
,
767
, pp.
60
67
.
4.
Ewan
,
B. C. R.
, and
Moatamedi
,
M.
,
2000
, “
Design Aspects of Chemical Plant Exposed to Transient Pressure Loads
,”
Chem. Eng. Res. Des.
,
78
(
6
), pp.
866
870
.
5.
Otsuka
,
M.
,
Maehara
,
H.
,
Souli
,
M.
, and
Itoh
,
S.
,
2007
, “
Study on Development of Vessel for Shock Pressure Treatment for Food
,”
Int. J. Multiphys.
,
1
(
1
), pp.
69
84
.
6.
Khawaja
,
H. A.
,
Bertelsen
,
T. A.
,
Andreassen
,
R.
, and
Moatamedi
,
M.
,
2014
, “
Study of CRFP Shell Structures Under Dynamic Loading in Shock Tube Setup
,”
J. Struct.
,
2014
, p.
487809
.
7.
Liptak
,
B. G.
,
1993
,
Flow Measurement
,
Chilton/CRC Press
,
Radnor, PA
.
8.
Washio
,
S.
,
Takahashi
,
S.
,
Yu
,
Y.
, and
Yamaguchi
,
S.
,
1996
, “
Study of Unsteady Orifice Flow Characteristics in Hydraulic Oil Lines
,”
ASME J. Fluids Eng.
,
118
(
4
), pp.
743
748
.
9.
Gerdyukov
,
N.
,
Krysanov
,
Y. A.
, and
Novikov
,
S.
,
1986
, “
Study of Pressure–Pulse Propagation in Tubes Filled With Water
,”
ASME J. Appl. Mech. Tech. Phys.
,
27
(
5
), pp.
715
717
.
10.
Khan
,
M. U.
,
Moatamedi
,
M.
,
Souli
,
M.
, and
Zeguer
,
T.
,
2008
, “
Multiphysics Out of Position Airbag Simulation
,”
Int. J. Crashworthiness
,
13
(
2
), pp.
159
166
.
11.
Souli
,
M.
, and
Benson
,
D. J.
,
2010
,
Arbitrary Lagrangian Eulerian and Fluid–Structure Interaction: Numerical Simulation
,
Wiley
,
Hoboken, NJ
.
12.
Pericevic
,
I. O.
, and
Moatamedi
,
M.
,
2007
, “
Application of the Penalty Coupling Method for the Analysis of Blood Vessels
,”
Eur. J. Comput. Mech.
,
16
(
3–4
), pp.
537
548
.
13.
Boffi
,
D.
,
Gastaldi
,
L.
, and
Heltai
,
L.
,
2007
, “
On the CFL Condition for the Finite Element Immersed Boundary Method
,”
Comput. Struct.
,
85
(
11–14
), pp.
775
783
.
14.
Mie
,
G.
,
1903
, “
Zur Kinetischen Theorie der Einatomigen Körper
,”
Ann. Phys.
,
316
(
8
), pp.
657
697
.
15.
Marsh
,
S. P.
,
1980
,
LASL Shock Hugoniot Data
,
University of California Press
,
Berekely, CA
.
16.
Shin
,
Y. S.
,
Lee
,
M.
,
Lam
,
K. Y.
, and
Yeo
,
K. S.
,
1998
, “
Modeling Mitigation Effects of Watershield on Shock Waves
,”
Shock Vib.
,
5
(
4
), pp.
225
234
.
17.
Souli
,
M.
,
Aquelet
,
N.
,
Al-Bahkali
,
E.
, and
Moatamedi
,
M.
,
2013
, “
A Mapping Method for Shock Waves Using ALE Formulation
,”
Comput. Model. Eng. Sci.
,
91
(
2
), pp.
119
133
.
18.
Barras
,
G.
,
Souli
,
M.
,
Aquelet
,
N.
, and
Couty
,
N.
,
2012
, “
Numerical Simulation of Underwater Explosions Using an ALE Method. The Pulsating Bubble Phenomena
,”
Ocean Eng.
,
41
, pp.
53
66
.
19.
Souli
,
M.
, and
Gabrys
,
J.
,
2013
, “
A Coupling Method for Hydrodynamic Ram Analysis: Experimental and Numerical Investigation
,”
ASME J. Pressure Vessel Technol.
,
136
(
1
), p.
011301
.
20.
Ozdemir
,
Z.
,
Souli
,
M.
, and
Fahjan
,
Y. M.
,
2010
, “
Application of Nonlinear Fluid–Structure Interaction Methods to Seismic Analysis of Anchored and Unanchored Tanks
,”
Eng. Struct.
,
32
(
2
), pp.
409
423
.
21.
Cheng
,
W. L.
,
Itoh
,
S.
,
Jen
,
K. C.
, and
Moatamedi
,
M.
,
2007
, “
A New Analytical Model for High-Velocity Impact of Thick Composites
,”
Int. J. Crashworthiness
,
12
(
1
), pp.
57
65
.
22.
Sun
,
Z.
,
Howard
,
D.
, and
Moatamedi
,
M.
,
2005
, “
Finite Element Analysis of Footwear and Ground Interaction
,”
Strain
,
41
(
3
), pp.
113
117
.
23.
Hallquist
,
J. O.
,
2006
,
LS-DYNA Theoretical Manual
,
Livermore Software Technology
,
Livermore, CA
.
24.
Cohen
,
S. D.
, and
Hindmarsh
,
A. C.
,
1996
, “
CVODE, a Stiff/Nonstiff ODE Solver in C
,”
Comput. Phys.
,
10
(
2
), pp.
138
143
.
25.
Tijsseling
,
A.
,
2007
, “
Water Hammer With Fluid–Structure Interaction in Thick-Walled Pipes
,”
Comput. Struct.
,
85
(
11
), pp.
844
851
.
26.
Messahel
,
R.
,
Cohen
,
B.
,
Souli
,
M.
, and
Moatammedi
,
M.
,
2011
, “
Fluid–Structure Interaction for Water Hammers Effects in Petroleum and Nuclear Plants
,”
Int. J. Multiphys.
,
5
(
4
), pp.
377
386
.
27.
Messahel
,
R.
,
Cohen
,
B.
,
Moatamedi
,
M.
,
Boudlal
,
A.
,
Souli
,
M.
, and
Aquelet
,
N.
,
2015
, “
Numerical and Experimental Investigations of Water Hammers in Nuclear Industry
,”
Int. J. Multiphys.
,
9
(
1
), pp.
21
36
.
28.
Shu
,
J.-J.
,
2003
, “
Modelling Vaporous Cavitation on Fluid Transients
,”
Int. J. Pressure Vessels Piping
,
80
(
3
), pp.
187
195
.
You do not currently have access to this content.