The inner surface of a reactor pressure vessel (RPV) is assumed to be subjected to pressurized thermal shocks (PTSs) caused by the injection of emergency cooling water. The downstream is not homogeneous but typically in a plume shape coming from the inlet nozzles. In this paper, both deterministic and probabilistic methods are used to assess the integrity of a model RPV subjected to PTS. The favor code is used to calculate the probabilities for crack initiation and failure of the RPV considering crack distributions based on cracks observed in the Shoreham and PVRUF RPVs. The study shows that peak KI of the cracks inside the plume increases about 33% compared with that outside. The conditional probability inside the plume is more than eight orders of magnitude higher than outside the plume. In order to be conservative, it is necessary to consider the plume effect in the integrity assessment.

References

References
1.
Qian
,
G.
, and
Niffenegger
,
M.
,
2013
, “
Procedures, Methods and Computer Codes for Probabilistic Assessment of Reactor Pressure Vessels Subjected to Pressurized Thermal Shocks
,”
Nucl. Eng. Des.
,
258
, pp.
35
50
.
2.
Qian
,
G.
, and
Niffenegger
,
M.
,
2014
, “
Deterministic and Probabilistic Analysis of a Reactor Pressure Vessel Subjected to Pressurized Thermal Shocks
,”
Nucl. Eng. Des.
,
273
, pp.
381
395
.
3.
Qian
,
G.
,
Gonzalez-Albuixech
,
V. F.
, and
Niffenegger
,
M.
,
2014
, “
Probabilistic PTS Analysis of a Reactor Pressure Vessel by Considering Realistic Crack Distributions
,”
Nucl. Eng. Des.
,
270
, pp.
312
324
.
4.
Niffenegger
,
M.
, and
Reichlin
,
K.
,
2012
, “
The Proper Use of Thermal Expansion Coefficients in Finite Element Calculations
,”
Nucl. Eng. Des.
,
243
, pp.
356
359
.
5.
Qian
,
G.
, and
Niffenegger
,
M.
,
2013
, “
Integrity Analysis of a Reactor Pressure Vessel Subjected to Pressurized Thermal Shocks by Considering Constraint Effect
,”
Eng. Fract. Mech.
,
112–113
, pp.
14
25
.
6.
Qian
,
G.
, and
Niffenegger
,
M.
,
2013
, “
Investigation on Constraint Effect of a Reactor Pressure Vessel Subjected to Pressurized Thermal Shocks
,”
ASME
Paper No. PVP 2013-98161.
7.
Qian
,
G.
,
Gonzalez-Albuixech
,
V. F.
, and
Niffenegger
,
M.
,
2014
, “
In-Plane and Out-of-Plane Constraint Effects Under Pressurized Thermal Shocks
,”
Int. J. Solids Struct.
,
51
(
6
), pp.
1311
1321
.
8.
González-Albuixech
,
V. F.
,
Qian
,
G.
, and
Niffenegger
,
M.
,
2014
, “
Integrity Analysis of Reactor Pressure Vessels Subjected to Pressurized Thermal Shocks by XFEM
,”
Nucl. Eng. Des.
,
275
, pp.
336
343
.
9.
González-Albuixech
,
V. F.
,
Qian
,
G.
, and
Niffenegger
,
M.
,
2014
, “
Integrity Analysis of a Reactor Pressure Vessel With Quasi Laminar Flaws Subjected to Pressurized Thermal Shocks
,”
Nucl. Eng. Des.
,
280
, pp.
464
472
.
10.
González-Albuixech
,
V. F.
,
Qian
,
G.
,
Sharabi
,
M.
,
Niffenegger
,
M.
,
Niceno
,
B.
, and
Lafferty
,
N.
, “
Comparison of PTS Analyses of RPVs Based on 3D-CFD and RELAP5
,”
Nucl. Eng. Des.
,
291
, pp.
168
178
.
11.
SCIENTECH, Inc.
,
1999
,
RELAP5/Mod3 Code Manual, Vol. I: Code Structure, System Models and Solution Methods
,
The Thermal Hydraulics Group
, ID.
12.
Sharabi
,
M.
,
Niceno
,
B.
,
Gonzalez-Albuixech
,
V. F.
, and
Niffenegger
,
M.
, “
Computational Fluid Dynamics of Pressurized Thermal Shock Phenomena in the Reactor Pressure Vessel
,”
Nucl. Eng. Des.
(to be published).
13.
ANSYS, Inc
,
2013
, FLUENT 15.0 Theory Guide.
14.
Hibbitt, Karlsson, Sorensen
,
2013
, Abaqus 6.13.3 Manual.
15.
Büeckner
,
H.
,
1970
, “
A Novel Principle for the Computation of Stress Intensity Factors
,”
ZAMM
,
50
, pp.
529
546
.
16.
Williams
,
P. T.
,
Dickson
,
T. L.
, and
Yin
,
S.
,
2004
, “
Fracture Analysis of Vessels-Oak Ridge FAVOR, v 04.1, Computer Code: Theory and Implementation of Algorithms, Methods, and Correlations
,” Report No. NUREG/CR-685.
17.
ASME
,
1998
,
ASME Boiler and Pressure Vessel Code, Section XI, Rules for Inservice Inspection of Nuclear Power Plant Components, Appendix A
,
ASME
,
New York
.
18.
Moës
,
N.
,
Dolbow
,
J.
, and
Belytschko
,
T.
,
1999
, “
A Finite Element Method for Crack Growth Without Remeshing
,”
Int. J. Numer. Methods Eng.
,
46
(
1
), pp.
131
150
.
19.
ASME
,
1995
,
ASME Boiler and Pressure Vessel Code, Section III, Nuclear Power Plant Components
,
ASME
,
New York
.
20.
ASTM-E1921-02
,
1997
,
Test Method for Determination of Reference Temperature, T0, for Ferritic Steels in the Transition Range
, American Society for Testing and Materials.
21.
Simonen
,
F. A.
,
Doctor
,
S. R.
,
Schuster
,
G. J.
, and
Heasler
,
P. G.
,
2004
, “
A Generalized Procedure for Generating Flaw-Related Inputs for the FAVOR Code
,” Report No. NUREG/CR-6817.
You do not currently have access to this content.