A high-energy piping (HEP) asset integrity management program is important for the safety of plant personnel and reliability of the fossil plant generating unit. HEP weldment failures have resulted in serious injuries, fatalities, extensive damage of components, and significant lost generation. The main steam (MS) piping system is one of the most critical HEP systems. Creep damage assessment in MS piping systems should include the evaluation of multiaxial stresses associated with field conditions and significant anomalies, such as malfunctioning supports and significant displacement interferences. This paper presents empirical data illustrating that the most critical girth welds of MS piping systems have creep failures which can be successfully ranked by a multiaxial stress parameter, such as maximum principal stress. Inelastic (redistributed) stresses at the piping outside diameter (OD) surface were evaluated for the base metal of three MS piping systems at the piping analysis model nodes. The range of piping system stresses at the piping nodes for each piping system was determined for the redistributed creep stress condition. The range of piping stresses was subsequently included on a Larson–Miller parameter (LMP) plot for the grade P22 material, revealing the few critical (lead-the-fleet) girth welds selected for nondestructive examination (NDE). In the three MS piping systems, the stress ranges varied from 55% to 80%, with only a few locations at stresses beyond the 65 percentile of the range. By including evaluations of significant field anomalies and the redistributed multiaxial stresses on the outside surface, it was shown that there is a good correlation of the ranked redistributed multiaxial stresses to the observed creep damage. This process also revealed that a large number of MS piping girth welds have insufficient applied stresses to develop substantial creep damage within the expected unit lifetime (assuming no major fabrication defects). This study also provided a comparison of the results of a conventional American Society of Mechanical Engineers (ASME) B31.1 Code as-designed sustained stress analysis versus the redistributed maximum principal stresses in the as-found (current) condition for a complete set of MS piping system nodes. The evaluations of redistributed maximum principal stresses in the as-found condition were useful in selecting high priority ranked girth weldment creep damage locations. The evaluations of B31.1 Code as-designed sustained load stresses were not useful in selecting high priority creep damage locations.

References

1.
Cohn
,
M. J.
,
Faham
,
F. G.
, and
Patel
,
D.
,
2014
, “
Frequency Distribution Curves for Main Steam Piping Multiaxial Stresses
,”
ASME
Paper No. PVP2014-28471.
2.
ASME
,
2014
, “
ASME B31.1-2014 Edition, Power Piping
,”
ASME Code for Pressure Piping
, American Society of Mechanical Engineers, New York, Standard No. ASME B31.1-2014.
3.
Roark
,
R. J.
, and
Young
,
W. C.
,
1975
,
Formulas for Stress and Strain
, 5th ed.,
McGraw-Hill
,
New York
, p.
503
.
4.
Rankine
,
W.
,
1857
, “
On the Stability of Loose Earth
,”
Philos. Trans. R. Soc. London
,
147
, pp.
9
27
.
5.
Coulomb
,
C.
,
1776
, “
Essai sur une application des régles des maximis et minimis á quelques problémes de statique rélatifs á l'architecture
,”
Mémoires d l'Acad. R. Des. Sci.
,
7
, p.
343
.
6.
Tresca
,
H.
,
1864
, “
Mémoire sur l’écoulement des corps solides soumis a de fortes pressions
,”
C. R. Acad. Sci.
,
59
, pp.
754
758
.
7.
Tresca
,
H.
,
1868
,
Mémoire sur l’écoulement des corps solides
,
Mémoires Par Divers Savants
, C. R. Acad. Sci., Paris, Vol.
18
, p.
733
8.
Tresca
,
H.
,
1872
,
Mémoire sur l’écoulement des corps solides
,
Mémoires Par Divers Savants
, C. R. Acad. Sci., Paris, Vol.
20
, pp.
75
135
.
9.
Huber
,
M. T.
,
1904
, “
Wlaściwa praca odksztalcenia jako miara wytężenia materialu
,”
Czas. Tech.
,
22
, pp.
34
40
.
10.
Huber
,
M. T.
,
1904
, “
Wlaściwa praca odksztalcenia jako miara wytężenia materialu
,”
Czas. Tech.
,
22
, pp.
49
50
.
11.
Huber
,
M. T.
,
1904
, “
Wlaściwa praca odksztalcenia jako miara wytężenia materialu
,”
Czas. Tech.
,
22
, pp.
61
62
.
12.
Huber
,
M. T.
,
1904
, “
Wlaściwa praca odksztalcenia jako miara wytężenia materialu
,”
Czas. Tech.
,
22
, pp.
80
81
.
13.
Mises
,
R.
,
1913
, “
Mechanik der festen Körper im plastisch deformablen Zustand
,”
Gottingen Nachr. Math. Phys.
,
4
(
1
) pp.
582
592
.
14.
Hencky
,
H.
,
1924
, “
Zur Theorie plastischer Deformationen und der hierdurch im Material hervorgerufen Nach-Spannungen
,”
ZAMM
,
4
(
4
), pp.
323
334
.
15.
Lamé
,
G.
,
1852
,
Lecons sur la théorie… de l’élasticité
,
Gauthier-Villars
,
Paris
.
16.
Bailey
,
R. W.
,
1956
, “
Creep Relationships and Their Application to Pipes, Tubes, and Cylindrical Parts Under Internal Pressure
,”
Proc. Inst. Mech. Eng.
,
164
(
1
), pp.
425
431
.
17.
Cohn
,
M. J.
, and
Nass
,
D.
,
2002
, “
Creep Life Prediction for High Energy Piping Girth Welds Case History: Cholla, Unit 2
,”
ASME
Paper No. PVP2002-1225.
18.
Cohn
,
M. J.
,
1989
, “
Mathematical Simulation of Thermal Displacements for a Steam Piping System in the Material Creep Regime
,”
ASME/JSME
Pressure Vessels and Piping Conference, Honolulu, HI, July 23–27, pp.
105
111
.
19.
Yee
,
K. Y.
,
Cohn
,
M. J.
,
2000
, “
Creep Relaxation Behavior of High-Energy Piping
,”
Trans. ASME
,
122
, pp.
488
493
.
20.
Cohn
,
M. J.
,
2013
, “
Asset Integrity Management of High Pressure Piping Systems Subject to Creep
,”
ASME
Paper No. PVP2013-94523.
21.
NRIM
,
1997
, “
Data Sheets on the Elevated-Temperature Properties of Normalized and Tempered 2¼Cr-1Mo Steel Plates for Boilers and Pressure Vessels (SCMV 4 NT)
,” National Research Institute for Metals, Tokyo, Japan, Creep Data Sheet No. 11B.
22.
Larson
,
F. R.
, and
Miller
,
J.
,
1952
, “
A Time-Temperature Relationship for Rupture and Creep Stresses
,”
Trans. ASME
,
74
(
5
), pp.
756
775
.
You do not currently have access to this content.