The creep deformation and damage evolution of nickel base superalloy (Waspaloy) at 700 °C are studied using the classic Kachanov–Rabotnov (KR) and a recently developed Sin-hyperbolic (Sinh) model. Uniaxial creep deformation and Bridgman rupture data collected from literature are used to determine the model constants and to compare the KR and the Sinh solutions. Finite-element (FE) simulations on a single eight-node element are conducted to validate the accuracy of the FE code. It is observed that KR cannot predict the creep deformation, damage, and rupture life of nickel base superalloys accurately using one set of constants for all the stress levels. The Sinh model exhibits a superior ability to predict the creep behavior using one set of constants for all the stress levels. Finite-element analysis (FEA) on 3D Bridgman notched Waspaloy specimen using the Sinh model is conducted. The results show that the Sinh model when combined with a representative stress equation and calibrated with experimental data can accurately predict the “notch effect” observed in the rupture life of notched specimen. Contour plots of damage evolution and stress redistribution are presented. It is demonstrated that the Sinh model is less stress sensitive, produces unconditional critical damage equal to unity at rupture, exhibits a more realistic damage distribution around the crack tip, and offers better crack growth analysis than KR.

References

References
1.
Stewart
,
C. M.
, and
Gordon
,
A. P.
,
2011
, “
Strain and Damage-Based Analytical Methods to Determine the Kachanov-Rabotnov Tertiary Creep Damage Constants
,”
Int. J. Damage Mech.
,
21
(
8
): pp.
1186
1201
.
2.
Hyde
,
T. H.
,
Becker
,
A. A.
,
Sun
,
W.
,
Yaghi
,
A.
,
Williams
,
J. A.
, and
Concari
,
S.
,
2006
, “
Determination of Creep Properties for P91 Weldment Materials at 625 °C
,”
5th International Conference on Mechanics and Materials in Design
, University of Porto, Porto, Portugal, Vol. 1, pp.
1
13
.
3.
Goodall
, I
. W.
, and
Skelton
,
R. P.
,
2004
, “
The Importance of Multiaxial Stress in Creep Deformation and Rupture
,”
Fatigue Fract. Eng. Mater. Struct.
,
27
(
4
), pp.
267
272
.
4.
Ha
,
J.
,
Tabuchi
,
M.
,
Hongo
,
H.
,
Yokobori
,
A. T.
, and
Fuji
,
A.
,
2004
, “
Creep Crack Growth Properties for 12CrWCoB Rotor Steel Using Circular Notched Specimens
,”
Int. J. Pressure Vessels Piping
,
81
(
5
), pp.
401
407
.
5.
Lukáš
,
P.
,
Preclı́k
,
P.
, and
Čadek
,
J.
,
2001
, “
Notch Effects on Creep Behaviour of CMSX-4 Superalloy Single Crystals
,”
Mater. Sci. Eng. A
,
298
(
1
), pp.
84
89
.
6.
Hosseini
,
E.
,
Holdsworth
,
S. R.
, and
Mazza
,
E.
,
2013
, “
Stress Regime-Dependent Creep Constitutive Model Considerations in Finite Element Continuum Damage Mechanics
,”
Int. J. Damage Mech.
,
22
(
8
), pp.
1186
1205
.
7.
Yao
,
H. T.
,
Xuan
,
F. Z.
,
Wang
,
Z.
, and
Tu
,
S. T.
,
2007
, “
A Review of Creep Analysis and Design Under Multi-Axial Stress States
,”
Nucl. Eng. Des.
,
237
(
18
), pp.
1969
1986
.
8.
Yu
,
T.
,
Yatomi
,
M.
, and
Shi
,
H. J.
,
2009
, “
Numerical Investigation on the Creep Damage Induced by Void Growth in Heat Affected Zone of Weldments
,”
Int. J. Pressure Vessels Piping
,
86
(
9
), pp.
578
584
.
9.
Rouse
,
J. P.
,
Sun
,
W.
,
Hyde
,
T. H.
, and
Morris
,
A.
,
2013
, “
Comparative Assessment of Several Creep Damage Models for Use in Life Prediction
,”
Int. J. Pressure Vessels Piping
,
108
, pp.
81
87
.
10.
Dyson
,
B.
,
2000
, “
Use of CDM in Materials Modeling and Component Creep Life Prediction
,”
ASME J. Pressure Vessel Technol.
,
122
(
3
), pp.
281
296
.
11.
Hyde
,
T. H.
,
Becker
,
A. A.
,
Sun
,
W.
, and
Williams
,
J. A.
,
2006
, “
Finite-Element Creep Damage Analyses of P91 Pipes
,”
Int. J. Pressure Vessels Piping
,
83
(
11
), pp.
853
863
.
12.
Stewart
,
C. M.
,
2013
, “
A Hybrid Constitutive Model for Creep, Fatigue, and Creep-Fatigue Damage
,” Ph.D. dissertation, University of Central Florida, Orlando, FL.
13.
Haque
,
M. S.
, and
Stewart
,
C. M.
,
2015
, “
Comparison of a New Sin-Hyperbolic Creep Damage Constitutive Model With the Classic Kachanov-Rabotnov Model Using Theoretical and Numerical Analysis
,”
TMS2015 Supplemental Proceedings
, pp.
937
945
.
14.
Yatomi
,
M.
,
Nikbin
,
K. M.
, and
O'Dowd
,
N. P.
,
2003
, “
Creep Crack Growth Prediction Using a Damage Based Approach
,”
Int. J. Pressure Vessels Piping
,
80
(
7
), pp.
573
583
.
15.
Cocks
,
A. C. F.
, and
Ashby
,
M. F.
,
1980
, “
Intergranular Fracture During Power-Law Creep Under Multiaxial Stresses
,”
Metal Sci.
,
14
(
8–9
), pp.
395
402
.
16.
Bernstein
,
H. L.
,
1998
, “
Materials Issues for Users of Gas Turbines
,”
27th Turbomachinery Symposium
, Turbomachinery Laboratory, Texas A&M University, College Station, TX, pp.
129
179
.
17.
Yu
,
Q. M.
,
Wang
,
Y.
,
Wen
,
Z. X.
, and
Yue
,
Z. F.
,
2009
, “
Notch Effect and Its Mechanism During Creep Rupture of Nickel-Base Single Crystal Superalloys
,”
Mater. Sci. Eng. A
,
520
(
1
), pp.
1
10
.
18.
Hyde
,
T. H.
,
Xia
,
L.
, and
Becker
,
A. A.
,
1996
, “
Prediction of Creep Failure in Aero Engine Materials Under Multi-Axial Stress States
,”
Int. J. Mech. Sci.
,
38
(
4
), pp.
385
403
.
19.
Jiang
,
Y. P.
,
Guo
,
W. L.
,
Yue
,
Z. F.
, and
Wang
,
J.
,
2006
, “
On the Study of the Effects of Notch Shape on Creep Damage Development Under Constant Loading
,”
Mater. Sci. Eng., A
,
437
(
2
), pp.
340
347
.
20.
Yu
,
Q. M.
,
Yue
,
Z. F.
, and
Liu
,
Y. S.
,
2005
, “
Numerical Study on the Creep Damage Development in Circumferential Notched Specimens Under Cyclic Loading
,”
Mater. Sci. Eng., A
,
406
(
1
), pp.
166
171
.
21.
Hayhurst
,
D. R.
,
Dimmer
,
P. R.
, and
Morrison
,
C. J.
,
1984
, “
Development of Continuum Damage in the Creep Rupture of Notched Bars
,”
Philos. Trans. R. Soc., A
,
311
(
1516
), pp.
103
129
.
22.
Ng
,
S. E.
,
Webster
,
G. A.
, and
Dyson
,
B. F.
,
1981
, “
Notch Weakening and Strengthening in Creep of 05Cr 05Mo 025 Steel
,” ICF5, Cannes, France, pp.
1275
1283
.
23.
Fuji
,
A.
,
Tabuchi
,
M.
,
Yokobori
,
A. T.
, and
Yokobori
,
T.
,
1999
, “
Influence of Notch Shape and Geometry During Creep Crack Growth Testing of Ti-Al Intermetallic Compounds
,”
Eng. Fract. Mech.
,
62
(
1
), pp.
23
32
.
24.
Webster
,
G. A.
,
Holdsworth
,
S. R.
,
Loveday
,
M. S.
,
Nikbin
,
K.
,
Perrin
, I
. J.
,
Purper
,
H.
, and
Spindler
,
M. W.
,
2004
, “
A Code of Practice for Conducting Notched Bar Creep Tests and for Interpreting the Data
,”
Fatigue Fract. Eng. Mater. Struct.
,
27
(
4
), pp.
319
342
.
25.
Liu
,
Y.
, and
Murakami
,
S.
,
1998
, “
Damage Localization of Conventional Creep Damage Models and Proposition of a New Model for Creep Damage Analysis
,”
JSME Int. J., Ser. A
,
41
(
1
), pp.
57
65
.
26.
Hayhurst
,
D. R.
,
1972
, “
Creep Rupture Under Multi-Axial States of Stress
,”
J. Mech. Phys. Solids
,
20
(
6
), pp.
381
382
.
27.
Othman
,
A. M.
, and
Hayhurst
,
D. R.
,
1993
, “
Determination of Large Strain Multi-Axial Creep Rupture Criteria Using Notched-Bar Data
,”
Int. J. Damage Mech.
,
2
(
1
), pp.
16
52
.
28.
Stewart
,
C. M.
,
2009
, “
Tertiary Creep Damage Modeling of a Transversely Isotropic Ni-Based Superalloy
,”
M.Sc. thesis
, University of Central Florida, Orlando, FL.
29.
Hill
,
R.
,
1948
, “
A Theory of the Yielding and Plastic Flow of Anisotropic Metals
,”
Proc. R. Soc. London A
,
193
(
1033
), pp.
281
297
.
30.
Kachanov
,
L. M.
,
1958
, “
Time of the Rupture Process Under Creep Conditions
,”
Isv. Akad. Nauk SSR Otd Tekh. Nauk
,
8
, pp.
26
31
.
31.
Rabotnov
,
Y. N.
,
1969
,
Creep Problems in Structural Members
,
Wiley-VCH Verlag GmbH and Co. KGaA
,
Weinheim, Germany
.
32.
McVetty
,
P. G.
,
1943
, “
Creep of Metals at Elevated Temperatures–Hyperbolic-Sine Relation Between Stress and Creep Rate
,”
Trans. ASME
,
65
(
7
), pp.
761
767
.
33.
Haque
,
M. S.
,
2015
, “
An Improved Sin-Hyperbolic Constitutive Model for Creep Deformation and Damage
,”
Dissertation
, The University of Texas, El Paso, TX.
34.
Spindler
,
M. W.
,
Hales
,
R.
, and
Skelton
,
R. P.
,
2001
, “
The Multiaxial Creep Ductility of an Ex-Service Type 316H Stainless Steel
,”
Book-Inst. Mater.
,
769
, pp.
679
690
.
35.
Hayhurst
,
D. R.
,
Brown
,
P. R.
, and
Morrison
,
C. J.
,
1984
, “
The Role of Continuum Damage in Creep Crack Growth
,”
Philos. Trans. R. Soc., A
,
311
(
1516
), pp.
131
158
.
36.
Spindler
,
M. W.
,
2004
, “
The Multiaxial Creep Ductility of Austenitic Stainless Steels
,”
Fatigue Fract. Eng. Mater. Struct.
,
27
(
4
), pp.
273
281
.
37.
Chellapandi
,
P.
,
Srinivasan
,
R.
,
Chetal
,
S. C.
, and
Raj
,
B.
,
2006
, “
Experimental Creep Life Assessment of Tubular Structures With Geometrical Imperfections in Welds With Reference to Fast Reactor Plant Life
,”
Int. J. Pressure Vessels Piping
,
83
(
7
), pp.
556
564
.
38.
Al-Abed
,
B.
,
Timmins
,
R.
,
Webster
,
G. A.
, and
Loveday
,
M. S.
,
1999
, “
Validation of a Code of Practice for Notched Bar Creep Rupture Testing: Procedures and Interpretation of Data for Design
,”
Mater. High Temp.
,
16
(
3
), pp.
143
158
.
39.
Hyde
,
T. H.
,
Jones
,
I. A.
,
Peravali
,
S.
,
Sun
,
W.
,
Wang
,
J. G.
, and
Leen
,
S. B.
,
2005
, “
Anisotropic Creep Behaviour of Bridgman Notch Specimens
,”
Proc. Inst. Mech. Eng., Part L
,
219
(
3
), pp.
163
175
.
40.
Lin
,
G.
,
1999
,
ANSYS User Material Subroutine USERMAT
,
ANSYS, Inc.
,
Canonsburg, PA
.
41.
ANSYS Academic Research
,
Mechanical APDL
, Release 15.0,
ANSYS, Inc.
,
Canonsburg, PA
.
42.
Becker
,
A. A.
,
Hyde
,
T. H.
,
Sun
,
W.
, and
Andersson
,
P.
,
2002
, “
Benchmarks for Finite Element Analysis of Creep Continuum Damage Mechanics
,”
Comput. Mater. Sci.
,
25
(
1
), pp.
34
41
.
43.
Murakami
,
S.
, and
Liu
,
Y.
,
1995
, “
Mesh-Dependence in Local Approach to Creep Fracture
,”
Int. J. Damage Mech.
,
4
(
3
), pp.
230
250
.
44.
Wisniewski
,
A.
, and
Beddoes
,
J.
,
2009
, “
Influence of Grain-Boundary Morphology on Creep of a Wrought Ni-Base Superalloy
,”
Mater. Sci. Eng., A
,
510
, pp.
266
272
.
45.
Yao
,
Z.
,
Zhang
,
M.
, and
Dong
,
J.
,
2013
, “
Stress Rupture Fracture Model and Microstructure Evolution for Waspaloy
,”
Metall. Mater. Trans. A
,
44
(
7
), pp.
3084
3098
.
46.
Hong
,
H. U.
,
Kim
,
I. S.
,
Choi
,
B. G.
,
Kim
,
M. Y.
, and
Jo
,
C. Y.
,
2009
, “
The Effect of Grain Boundary Serration on Creep Resistance in a Wrought Nickel-Based Superalloy
,”
Mater. Sci. Eng., A
,
517
(
1
), pp.
125
131
.
47.
Soula
,
A.
,
Renollet
,
Y.
,
Boivin
,
D.
,
Pouchou
,
J. L.
,
Locq
,
D.
,
Caron
,
P.
, and
Bréchet
,
Y.
,
2009
, “
Analysis of High-Temperature Creep Deformation in a Polycrystalline Nickel-Base Superalloy
,”
Mater. Sci. Eng., A
,
510
, pp.
301
306
.
48.
Floreen
,
S.
,
1975
, “
The Creep Fracture of Wrought Nickel-Base Alloys by a Fracture Mechanics Approach
,”
Metall. Trans. A
,
6
(
9
), pp.
1741
1749
.
49.
Floreen
,
S.
, and
Kane
,
R. H.
,
1976
, “
A Critical Strain Model for the Creep Fracture of Nickel-Base Superalloys
,”
Metall. Trans. A
,
7
(
8
), pp.
1157
1160
.
You do not currently have access to this content.