Seismic actions, soil settlements and landslides, fluctuations in permafrost layers, accidental loads, and reeling are responsible for large plastic deformations and widespread yielding of pipelines, which may lead to damage or failure, either due to monotonic loading or cyclic plastic strain fluctuations of high amplitude and short duration (e.g., Ni < ∼100 cycles). The damage associated to high intensity cyclic plasticity shows a combination of distinct mechanisms typical of both monotonic and low-cycle fatigue (LCF) (∼102 < Ni < ∼104 cycles) damage regimes. This fatigue domain is often called ultralow-cycle fatigue (ULCF) or extreme-low-cycle fatigue, in order to distinguish it from LCF. Despite monotonic ductile fracture and LCF have been subjected to significant research efforts and a satisfactory level of understanding of these phenomena has been already established, ULCF is neither sufficiently investigated nor understood. Consequently, further advances should be done since the data available in literature is scarce for this fatigue regime. In addition, ULCF tests are very challenging and there are no specific standards available in literature providing guidance. In this work, the performances of the X52, X60, and X65 API steel grades under monotonic, LCF, and ULCF loading conditions are investigated by means of an experimental program. Smooth specimens are susceptive to instability under ULCF tests. To overcome or minimize this shortcoming, antibuckling devices may be used in the ULCF tests. The use of notched specimens facilitates the deformation localization and therefore contributes to overcome the instability problems. However, the nonuniform stress/strain states raise difficulties concerning the analysis of the experimental data, requiring the use of multiaxial stress/strain parameters. Optical methods and nonlinear finite-element models were used to assess the strain and stress histories at critical locations, which were used to assess some existing damage models.

References

References
1.
de Jesus
,
A. M. P.
,
Natal
,
R.
,
Seabra
,
M.
,
Pereira
,
J. C. R.
, and
Fernandes
,
A. A.
,
2013
, “
Ultra Low Cycle Fatigue of Steel Under Cyclic High Strain Loading Conditions
,” Midterm Assessment Report, European Commission Report No.
RFSR CT 2011 00029
.
2.
Bleck
,
W.
,
Dahl
,
W.
,
Nonn
,
A.
,
Amlung
,
L.
,
Feldman
,
M.
,
Schäfer
,
D.
, and
Eichler
,
B.
,
2009
, “
Numerical and Experimental Analyses of Damage Behaviour of Steel Moment Connection
,”
Eng. Fract. Mech.
,
76
(
10
), pp.
1531
1547
.
3.
Bonora
,
N.
,
1997
, “
A Nonlinear CDM Model for Ductile Failure
,”
Eng. Fract. Mech.
,
58
(
1–2
), pp.
11
28
.
4.
Cockcroft
,
M. G.
, and
Latham
,
D. L.
,
1968
, “
Ductility and the Workability of Metals
,”
J. Inst. Metals
,
96
(
1
), pp.
33
39
.
5.
Datsko
,
J.
, and
Yang
,
C. T.
,
1960
, “
Correlation of Bendability of Metals With Their Tensile Properties
,”
Trans. ASME
,
82
(
4
), pp.
309
313
.
6.
Brozzo
,
P.
,
De Luca
,
B.
, and
Rendina
,
R.
,
1972
, “
A New Method for the Prediction of Formability in Metal Sheet, Sheet Metal Forming and Formability
,”
7th Biennial Conference of the IDDRG
,
Amsterdam
,
The Netherlands
, Oct. 9–13.
7.
Norris
,
D.
,
Reaugh
,
J.
,
Moran
,
B.
, and
Quinnones
,
D.
,
1978
, “
A Plastic-Strain Mean-Stress Criterion for Ductile Fracture
,”
ASME J. Eng. Mater.
,
100
(
3
), pp.
279
286
.
8.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1985
, “
Fracture Characteristics of Three Metals Subjected to Various Strains, Strains Rates, Temperatures and Pressures
,”
Eng. Fract. Mech.
,
21
(
1
), pp.
33
48
.
9.
McClintock
,
F. A.
,
1968
, “
A Criterion for Ductile Fracture by Growth of Holes
,”
ASME J. Appl. Mech.
,
35
(
2
), pp.
363
371
.
10.
Rice
,
J. R.
, and
Tracey
,
D. M.
,
1969
, “
On the Ductile Enlargement of Voids in Triaxial Stress Fields
,”
J. Mech. Phys. Solids
,
17
(
3
), pp.
201
217
.
11.
Kanvinde
,
A. M.
, and
Deierlein
,
G. G.
,
2007
, “
Cyclic Void Growth Model to Assess Ductile Fracture Initiation in Structural Steels Due to Ultra-Low Cycle Fatigue
,”
ASCE J. Eng. Mech.
,
133
(
6
), pp.
701
712
.
12.
Gurson
,
A. L.
,
1977
, “
Continuum Theory of Ductile Rupture by Void Nucleation and Growth. Part I: Yield Criteria and Flow Rules for Porous Ductile Media
,”
ASME J. Eng. Mater.
,
99
(
1
), pp.
2
15
.
13.
Tvergaard
,
V.
, and
Needleman
,
A.
,
1984
, “
Analysis of the Cup-Cone Fracture in a Round Tensile Bar
,”
Acta Metall.
,
32
(
1
), pp.
157
169
.
14.
Tvergaard
,
V.
,
1982
, “
Influence of Void Nucleation on Ductile Shear Fracture at a Free Surface
,”
J. Mech. Phys. Solids
,
30
(
6
), pp.
399
425
.
15.
Lemaıtre
,
J.
,
1985
, “
A Continuous Damage Mechanics Model for Ductile Fracture
,”
ASME J. Eng. Mater. Technol.
,
107
(
1
), pp.
83
89
.
16.
Xavier
,
J.
,
Pereira
,
J. C. R.
, and
de Jesus
,
A. M. P.
,
2014
, “
Characterization of Steel Components Under Monotonic Loading by Means of Image-Based Methods
,”
Opt. Lasers Eng.
,
53
, pp.
142
151
.
17.
Wierzbicki
,
T.
,
Bao
,
Y.
,
Lee
,
Y.-W.
, and
Bai
,
Y.
,
2005
, “
Calibration and Evaluation of Seven Fracture Models
,”
Int. J. Mech. Sci.
,
47
(
4–5
), pp.
719
743
.
18.
Pereira
,
J. C. R.
,
Xavier
,
J. M. C.
, and
de Jesus
,
A. M. P.
,
2014
, “
Ultra Low-Cycle Fatigue Behaviour of a Structural Steel
,”
Eng. Struct.
,
60
, pp.
214
222
.
19.
Lemaitre
,
J.
, and
Chaboche
,
J. L.
,
1990
,
Mechanics of Solid Materials
,
Cambridge University Press
,
Cambridge, UK
.
20.
Leblond
,
J. B.
,
Perrin
,
G.
, and
Devaux
,
J.
,
1995
, “
An Improved Gurson-Type Model for Hardenable Ductile Metals
,”
Eur. J. Mech. A/Solids
,
14
(
4
), pp.
499
527
.
21.
Steglich
,
D.
,
Pirondi
,
A.
,
Bonora
,
N.
, and
Brocks
,
W.
,
2005
, “
Micromechanical Modelling of Cyclic Plasticity Incorporating Damage
,”
Int. J. Solids Struct.
,
42
(
2
), pp.
337
351
.
22.
Barbu
,
L. G.
,
Martinez
,
X.
,
Oller
,
S.
, and
Barbat
,
A. H.
,
2015
, “
Validation on Large Scale Tests of a New Hardening–Softening Law for the Barcelona Plastic Damage Model
,”
Int. J. Fatigue,
81
, pp.
213
226
.
23.
Komotori
,
J.
, and
Shimizu
,
M.
,
1998
, “
Fracture Mechanism of Ferritic Ductile Cast Iron in Extremely Low Cycle Fatigue
,”
Low Cycle Fatigue and Elasto–Plastic Behaviour of Materials
,
K. T.
Rie
and
P. D.
Portella
, eds.,
Elsevier Science, Ltd.
,
Amsterdam
, pp.
39
44
.
24.
Kuroda
,
M.
,
2001
, “
Extremely Low Cycle Fatigue Life Prediction Based on a New Cumulative Fatigue Damage Model
,”
Int. J. Fatigue
,
24
(
6
), pp.
699
703
.
25.
Tateishi
,
K.
, and
Hanji
,
T.
,
2004
, “
Low Cycle Fatigue Strength of Butt-Welded Steel Joint by Means of New Testing System With Image Technique
,”
Int. J. Fatigue
,
26
(
12
), pp.
1349
1356
.
26.
Xue
,
L.
,
2007
, “
A Unified Expression for Low Cycle Fatigue and Extremely Low-Cycle Fatigue and Its Implication for Monotonic Loading
,”
Int. J. Fatigue
,
30
(
10–11
), pp.
1691
1698
.
27.
Coffin
,
L. F.
, Jr.
,
1971
, “
A Note on Low Cycle Fatigue Laws
,”
J. Mater.
,
6
(
2
), pp.
388
402
.
28.
Manson
,
S. S.
,
1954
, “
Behavior of Materials Under Conditions of Thermal Stress
,” National Advisory Committee for Aeronautics,
Lewis Flight Propulsion Laboratory
,
Cleveland, OH
,
NACA
Technical Report No. 1170.
29.
ASTM
,
2007
, “
ASTM E466: Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials
,”
American Society for Testing and Materials International
,
West Conshohocken, PA
.
30.
Abaqus
,
2012
, User's Manual Version 6.12,
Hibbitt, Karlsson, and Sorensen
,
Providence, RI
.
31.
Ramberg
,
W.
, and
Osgood
,
W. R.
,
1943
, “
Description of the Stress-Strain Curves by Three Parameters
,”
National Advisory Committee for Aeronautics
;
Washington, DC
,
NACA
Technical Note 902.
32.
Morrow
,
J. D.
,
1965
, “
Cyclic Plastic Strain Energy and Fatigue of Metals
,”
International Friction, Damping and Cyclic Plasticity
,
ASTM International
,
West Conshohocken
, PA,
ASTM
Paper No. STP 378, pp.
45
87
.
33.
Basquin
,
O. H.
,
1910
, “
The Exponential Law of Endurance Tests
,”
Proc. Am. Soc. Test. Mater.
,
10
, pp.
625
630
.
34.
Khan
,
A. S.
, and
Huang
,
S.
,
1995
,
Continuum Theory of Plasticity
,
Wiley
,
New York
.
35.
ASME
,
2004
,
ASME Boiler and Pressure Vessel Code
,
American Society of Mechanical Engineers
,
New York
.
36.
Pereira
,
J.
,
Ruano
,
J.
,
Schaffrath
,
S.
,
de Jesus
,
A. M. P.
,
Fernandes
,
A. A.
, and
Feldmann
,
M.
,
2015
, “
Ultra-Low-Cycle Fatigue Behaviour of Full-Scale Elbows
,”
ASME
Paper No. PVP2015-45966.
You do not currently have access to this content.