With the development of ultrasupercritical power generation technology, creep strength of high-temperature materials should be considered for safety evaluation and engineering design. However, long-time creep testing should be conducted by traditional creep assessment methods. This paper established a high-efficient prediction method for steady creep strain rate and creep strength based on short-term relaxation tests. Equivalent stress relaxation time and equivalent stress relaxation rate were defined according to stress relaxation characteristics and the Maxwell equation. An accelerated creep prediction approach from short-term stress relaxation tests was proposed by defining the equivalent relaxation rate as the creep rate during the steady stage. Stress relaxation and creep tests using high-temperature material 1Cr10NiMoW2VNbN steel were performed to validate the proposed model. Results showed that the experimental data are in good agreement with those predicted solutions. This indicates that short-term stress relaxation tests can be used to predict long-term creep behavior conveniently and reliably, and the proposed method is suitable for creep strength design and creep life prediction of 9–12%Cr steel used in ultrasupercritical unit at 600 °C.

References

References
1.
Penny
,
R. K.
, and
Marriot
,
D. L.
,
1995
,
Design for Creep
,
McGraw-Hill
,
London
.
2.
Kim
,
W. G.
,
Yoon
,
S. N.
, and
Ryu
,
W. S.
,
2005
, “
Application and Standard Error Analysis of the Parametric Methods for Predicting the Creep Life of Type 316LN SS
,”
Key Eng. Mater.
,
298
(
4
), pp.
2272
2277
.
3.
Evans
,
R. W.
,
1989
, “
Statistical Scatter and Variability of Creep Property Estimates in Theta Projection Method
,”
Mater. Sci. Technol.
,
5
(
7
), pp.
699
707
.
4.
Evans
,
R. W.
,
2000
, “
A Constitutive Model for the High-Temperature Creep of Particle-Hardened Alloys Based on the Theta Projection Method
,”
Proc. R. Soc. London, Ser. A
,
456
(
7
), pp.
835
868
.
5.
Bailey
,
R. W.
,
1935
, “
The Utilization of Creep Test Data in Engineering Design
,”
Proc. Inst. Mech. Eng.
,
131
(
1
), pp.
131
349
.
6.
Lovely
,
M. S.
, and
Dyson
,
B. F.
,
1990
, “
Constant Stress Creep Testing: When Is It Necessary?
,”
Fourth International Conference of Creep and Fracture of Engineering Materials and Structures
, Swansea, UK, Apr. 1–6, pp.
941
949
.
7.
Hort
,
R. V.
,
1976
, “
Assessment of Remaining Creep Life Using Accelerated Stress-Rupture Tests
,”
Met. Technol.
,
3
(
1
), pp.
1
7
.
8.
Viswanathan
,
R.
, and
Foulds
,
J.
,
1998
, “
Accelerated Stress Rupture Testing for Creep Life Prediction Value and Limitations
,”
ASME J. Pressure Vessel Technol.
,
120
(
1
), pp.
105
115
.
9.
Marahleh
,
G.
,
Kheder
,
A. R. I.
, and
Hamad
,
H. F.
,
2006
, “
Creep Life Prediction of Service-Exposed Turbine Blades
,”
Mater. Sci. Eng., A
,
433
(
1–2
) pp.
305
309
.
10.
Larson
,
F. R.
, and
Miller
,
J.
,
1952
, “
A Time–Temperature Relationship for Rupture and Creep Stresses
,”
ASME Trans.
,
74
(
5
), pp.
765
771
.
11.
Manson
,
S. S.
, and
Haferd
,
A. M.
,
1953
, “
A Linear Time–Temperature Relation for Extrapolation of Creep and Stress-Rupture Data
,” National Advisory Committee for Aeronautics, Washington, DC, Paper No.
NACA
TN 2890.
12.
Yamamoto
,
Y.
,
Brady
,
M. P.
,
Lu
,
Z. P.
,
Maziasz
,
P. J.
,
Liu
,
C. T.
,
Pint
,
B. A.
,
More
,
K. L.
,
Meyer
,
H. M.
, and
Payzant
,
E. A.
,
2007
, “
Creep-Resistant, Al2O3-Forming Austenitic Stainless Steels
,”
Science
,
316
(
5823
), pp.
433
436
.
13.
Ray
,
A. K.
,
Tiwari
,
Y. N.
,
Roy
,
P. K.
,
Chaudhuri
,
S.
,
Bose
,
S. C.
, and
Ghosh
,
R. N.
, and
Whittenberger
,
J. D.
,
2007
, “
Creep Rupture Analysis and Remaining Life Assessment of 2.25Cr-1Mo Steel Tubes From a Thermal Power Plant
,”
Mater. Sci. Eng., A
,
454–455
(16), pp.
679
684
.
14.
Kanda
,
Y.
, and
Kariya
,
Y.
,
2012
, “
Evaluation of Creep Properties for Sn–Ag–Cu Micro Solder Joint by Multi-Temperature Stress Test
,”
Microelectron. Reliab.
,
52
(
7
), pp.
1435
1440
.
15.
Stewart
,
C. M.
, and
Gordon
,
A. P.
,
2012
, “
Strain and Damage-Based Analytical Methods to Determine the Kachanov-Rabotnov Tertiary Creep Damage Constants
,”
Int. J. Damage Mech.
,
21
(
9
), pp.
1186
1201
.
16.
Ek
,
C. G.
,
Hagstrám
,
B.
, and
KubSát
,
J.
,
1986
, “
Prediction of the Creep Behavior of Polyethylene and Molybdenum From Stress Relaxation Experiments
,”
Rheol. Acta
,
25
(
5
), pp.
534
541
.
17.
Woodford
,
D. A.
,
1993
, “
Test Methods for Accelerated Development Design and Life Assessment of High-Temperature Materials
,”
Mater. Des.
,
14
(
4
), pp.
231
242
.
18.
Daleo
,
J. A.
,
Ellison
,
K. A.
, and
Woodford
,
D. A.
,
1999
, “
Application of Stress Relaxation Testing in Metallurgical Life Assessment Evaluations of GTD11 Alloy Turbine Buckets
,”
ASME J. Eng. Gas Turbines Power
,
121
(
1
), pp.
129
137
.
19.
Woodford
,
D. A.
,
Andrew
,
A.
, and
Bakker
,
W. T.
,
2000
, “
Stress Relaxation Testing as a Basis for Creep Analysis and Design of Silicon Nitride
,”
ASME J. Eng. Gas Turbines Power
,
122
(
4
), pp.
206
211
.
20.
Woodford
,
D. A.
,
2000
, “
Stress Relaxation Testing of Service Exposed IN738 for Creep Strength Evaluation
,”
ASME J. Eng. Gas Turbines Power
,
122
(
7
), pp.
451
456
.
21.
Bose
,
S. C.
,
Kulvir
,
S.
, and
Jayaraman
,
G.
,
2003
, “
Application of Stress Relaxation Test Methodology for Predicting Creep Life of a Large Steam Turbine Rotor Steel (1CrMoV)
,”
J. Test. Eval.
,
31
(
3
), pp.
183
195
.
22.
Bose
,
S. C.
,
Kulvir
,
S.
, and
Swaminathan
,
J.
,
2004
, “
Prediction of Creep Life of X10CrMoVNbN-91(P-91) Steel Through Short Term Stress Relaxation Test Methodology
,”
Mater. Sci. Technol.
,
20
(
5
), pp.
1290
1296
.
You do not currently have access to this content.