Primary water stress corrosion cracking (PWSCC) phenomenon in dissimilar metal welds is one of the safety issues in ageing pressurized water reactor (PWR) piping systems. It is well known that analysis accuracy of cracking propagation due to PWSCC depends on welding residual stress conditions. The U.S. Nuclear Regulatory Commission (NRC) and the Electric Power Research Institute (EPRI) carried out an international round robin validation program to evaluate and quantify welding residual stress analysis accuracy and uncertainty. In this paper, participation results of the authors in the round robin program were reported. The three-dimensional (3D) analysis based on a fast weld simulation using an iterative substructure method (ISM), was shown to provide accurate results in a high-speed computation. Furthermore, the influence of different heat source models on analysis results was investigated. It was demonstrated that the residual stress and distortion calculated using the moving heat source model were more accurate.

References

References
1.
Bamford
,
W.
, and
Hall
,
J.
,
2003
, “
A Review of Alloy 600 Cracking in Operating Nuclear Plants: Historical Experience and Future Trends
,”
11th International Conference Environmental Degradation of Materials in Nuclear Systems
, Stevenson, WA, Aug. 10–14, pp.
1071
1079
.
2.
Hickling
,
J.
,
Mcllree
,
A.
, and
Pathania
,
R.
,
2002
, “
Materials Reliability Program (MRP) Crack Growth Rates for Evaluating Primary Water Stress Corrosion Cracking (PWSCC) of Thick-Wall Alloy 600 Materials (MRP-55) Revision 1
,” Electric Power Research Institute (EPRI), Palo Alto, CA, EPRI Final Report No. 1006695.
3.
Econmou
,
J.
,
Assice
,
A.
,
Cattant
,
F.
,
Salin
,
J.
, and
Stindel
,
M.
,
1994
, “
Controles et Expertises Metallurgiques de Traversees de Coucercle de Cuve
,”
Fontevraud 3
, pp.
197
208
.
4.
Rao
,
G.
,
Moffatt
,
G.
, and
Mcllree
,
A.
,
2002
, “
Metallugical Investigation of Cracking in the Reactor Vessel Alpha Loop Hot Leg Nozzle to Pipe Weld at the V. C. Summer Station
,”
Fontevraud 5
.
5.
Bamford
,
W.
, and
Hall
,
J.
,
2004
, “
A Review of Alloy 600 Cracking in Operating Nuclear Plants Including Alloy 82 and 182 Weld Behavior
,”
ASME
Paper No. ICONE12-49520.
6.
Kobayashi
,
H.
,
Takeuchi
,
K.
,
Nakama
,
S.
,
Mukai
,
M.
, and
Ohta
,
T.
,
2004
, “
PWSCC Experience of Pressurizer Dissimilar Metal Welds at Tsuruga Unit-2
,”
ASME
Paper No. ICONE12-49474.
7.
Brust
,
F.
, and
Scott
,
P. M.
,
2007
, “
Weld Residual Stresses and Primary Water Stress Corrosion Cracking in Bimetal Nuclear Pipe Welds
,”
ASME
Paper No. PVP2007-26297.
8.
Miyazaki
,
K.
, and
Mochizuki
,
M.
,
2011
, “
The Effects of Residual Stress Distribution and Component Geometry on the Stress Intensity Factor of Surface Cracks
,”
ASME J. Pressure Vessel Technol.
,
133
(
1
), p.
011701
.
9.
Fricke
,
S.
,
Keim
,
E.
, and
Scmidt
,
J.
,
2001
, “
Numerical Weld Modeling—A Method for Calculating Weld-Induced Residual Stresses
,”
Nucl. Eng. Des.
,
206
(2–3), pp.
139
150
.
10.
Lindgren
,
L. E.
,
2006
, “
Numerical Modelling of Welding
,”
Comput. Methods Appl. Mech. Eng.
,
195
, pp.
6710
6736
.
11.
Lee
,
C. H.
,
Chang
,
K. H.
, and
Park
,
J. U.
,
2013
, “
Three-Dimensional Finite Element Analysis of Residual Stresses in Dissimilar Steel Pipe Welds
,”
Nucl. Eng. Des.
,
256
, pp.
160
168
.
12.
Brust
,
F. W.
,
Zhang
,
T.
,
Shim
,
D. J.
,
Kalyanam
,
S.
,
Wilkowski
,
G.
,
Smith
,
M.
, and
Goodfellow
,
A.
,
2010
, “
Summary of Weld Residual Stress Analysis for Dissimilar Metal Weld Nozzles
,”
ASME
Paper No. PVP2010-26106.
13.
Zhu
,
X. K.
, and
Chao
,
Y. J.
,
2002
, “
Effects of Temperature-Dependent Material Properties on Welding Simulation
,”
Comput. Struct.
,
80
(11), pp.
967
976
.
14.
Sarkani
,
S.
,
Tritchkov
,
V.
, and
Michaelov
,
G.
,
2000
, “
An Effect Approach for Computing Residual Stresses in Welded Joints
,”
Finite Elem. Anal. Des.
,
35
(3), pp.
247
268
.
15.
Jiang
,
W.
,
Yahiaoui
,
K.
,
Hall
,
F. R.
, and
Laoui
,
T.
,
2005
, “
Finite Element Simulation of Multipass Welding: Full Three-Dimensional Versus Generalized Plane Strain or Axisymmetric Models
,”
J. Strain Anal.
,
40
(
6
), pp.
587
597
.
16.
Warren
,
A. P.
,
Bate
,
S. K.
,
Charles
,
R.
,
O'Gara
,
D. M.
,
Wood
,
P. M.
, and
Gregg
,
A.
,
2006
, “
The Effect of Modelling Simplifications on the Prediction of Residual Stresses in Thin-Walled Pipe Butt Welds
,”
ASME
Paper No. PVP2006ICPVT-11-93384.
17.
Bouchard
,
P. J.
,
2009
, “
The NeT Bead-on-Plate Benchmark for Weld Residual Stress Simulation
,”
Int. J. Pressure Vessels Piping
,
86
(1), pp.
31
42
.
18.
Aird
,
C.
,
Smith
,
M.
,
Kapadia
,
P.
,
Venkata
,
K. A.
, and
Muransky
,
O.
,
2013
, “
Round Robin Prediction of Residual Stresses in the Edge-Welded Beam R6 Validation Benchmark Problem
,”
ASME
Paper No. PVP2013-98039.
19.
Rathbun
,
H. J.
,
Fredette
,
L. F.
,
Scott
,
P. M.
,
Csontos
,
A. A.
, and
Rudland
,
D. L.
,
2011
, “
NRC Welding Residual Stress Validation Program International Round Robin Program and Findings
,”
ASME
Paper No. PVP2011-57642.
20.
Kerr
,
M.
, and
Rathbun
,
H. J.
,
2012
, “
Summary of Finite Element (FE) Sensitivity Studies Conducted in Support of the NRC/EPRI Welding Residual Stress (WRS) Program
,”
ASME
Paper No. PVP2012-78883.
21.
Goldak
,
J. A.
,
Tchernov
,
S.
,
Zhou
,
J.
, and
Downey
,
D.
,
2012
, “
A Sensitivity Analysis of NRC Welding Residual Stress Validation Program International Round Robin Program
,”
ASME
Paper No. PVP2012-78657.
22.
Ku
,
F. H.
, and
Tang
,
S. S.
,
2012
, “
Investigation Study of 2-D VS. 3-D Weld Residual Stress Analyses of the NRC Phase II Mockup
,”
ASME
Paper No. PVP2012-78760.
23.
Benson
,
M.
,
Rudland
,
D.
, and
Csontos
,
A.
,
2014
, “
Weld Residual Stress Finite Element Analysis Validation: Part 1—Data Development Effort
,” NUREG-2162, Office of Nuclear Regulatory Research, U. S. Nuclear Regulatory Commission, Washington, DC, pp.
40
76
.
24.
Maekawa
,
A.
,
Noda
,
M.
,
Takahashi
,
S.
,
Oumaya
,
T.
,
Serizawa
,
H.
, and
Murakawa
,
H.
,
2009
, “
Evaluation of Residual Stress Distribution in Austenitic Stainless Steel Pipe Butt-Welded Joint
,”
Q. J. Jpn. Weld. Soc.
,
27
(
2
), pp.
240
244
.
25.
Maekawa
,
A.
,
Kawahara
,
A.
,
Serizawa
,
H.
, and
Murakawa
,
H.
,
2013
, “
Fast Computational Simulation for Multi-Pass Welding Pipe Joint Based on Iterative Substructure Method
,”
Trans. Jpn. Soc. Mech. Eng., Ser. A
,
79
(
808
), pp.
1852
1856
(in Japanese).
26.
Maekawa
,
A.
,
Kawahara
,
A.
,
Serizawa
,
H.
, and
Murakawa
,
H.
,
2015
, “
Fast Three-Dimensional Multipass Welding Simulation Using an Iterative Substructure Method
,”
J. Mater. Process. Technol.
,
215
, pp.
30
41
.
27.
Maekawa
,
A.
,
Serizawa
,
H.
, and
Murakawa
,
H.
,
2015
, “
Fast Computation Based on an Iterative Substructure Method for Three-Dimensional Simulation of Multipass Welding
,”
ASME J. Pressure Vessel Technol.
,
137
(4), p.
041410
.
28.
Maekawa
,
A.
,
Kawahara
,
A.
,
Serizawa
,
H.
, and
Murakawa
,
H.
,
2012
, “
Prediction of Weld Residual Stress in a PWR Pressurizer Surge Nozzle: A Proposed Fast Computational 3D Analysis Method and Influence of Its Heat Source Model
,”
ASME
Paper No. PVP2012-78032.
29.
Maekawa
,
A.
,
Kawahara
,
A.
,
Serizawa
,
H.
, and
Murakwa
,
H.
,
2013
, “
Residual Stress Study in Dissimilar Metal Welds of a PWR Pressurizer Surge Nozzle: Validation of Developed Fast Analysis Method and Examination of Safe-End Length Effect
,”
ASME
Paper No. PVP2013-97176.
30.
Leggatt
,
R. H.
,
Smith
,
D. J.
,
Smith
,
S. D.
, and
Faure
,
F.
,
1996
, “
Development and Experimental Validation of the Deep Hole Method for Residual Stress Measurement
,”
J. Strain Anal.
,
31
(
3
), pp.
177
186
.
31.
Smith
,
D. J.
,
Bouchard
,
P. J.
, and
George
,
D.
,
2000
, “
Measurement and Prediction of Residual Stresses in Thick-Section Steel Welds
,”
J. Strain Anal.
,
35
(
4
), pp.
287
305
.
32.
Mahmoudi
,
A. H.
,
Hossain
,
S.
,
Truman
,
C. E.
,
Smith
,
D. J.
, and
Pavier
,
M. J.
,
2009
, “
A New Procedure to Measure Near Yield Residual Stresses Using the Deep Hole Drilling Technique
,”
Exp. Mech.
,
49
(4), pp.
595
604
.
33.
Murakawa
,
H.
,
Deng
,
D.
, and
Ma
,
N.
,
2010
, “
Concept of Inherent Strain, Inherent Stress, Inherent Deformation and Inherent Force for Prediction of Welding Distortion and Residual Stress
,”
Trans. JWRI
,
39
(
2
), pp.
103
105
.
34.
Zhang
,
J.
,
Dong
,
P.
, and
Brust
,
F. W.
,
1997
, “
A 3-D Composite Shell Element Model for Residual Stress Analysis of Multi-Pass Welds
,”
Transactions of 14th International Conference on Structural Mechanics in Reactor Technology (SMiRT 14)
, BLDW/6, pp.
335
344
.
35.
Dong
,
P.
,
2001
, “
Residual Stress Analysis of a Multi-Pass Girth Weld: 3-D Special Shell Versus Axisymmetric Models
,”
ASME J. Pressure Vessel Technol.
,
123
(2), pp.
207
213
.
36.
Rybicki
,
E. F.
, and
Stonesifer
,
R. B.
,
1979
, “
Computation of Residual Stresses due to Multipass Welds in Piping Systems
,”
ASME J. Pressure Vessel Technol.
,
101
(2), pp.
149
154
.
37.
Lindgren
,
L. E.
,
Haggbland
,
H. A.
,
McDill
,
J. M. J.
, and
Oddy
,
A. S.
,
1997
, “
Automatic Remeshing for Three-Dimensional Finite Element Simulation of Welding
,”
Comput. Methods Appl. Mech. Eng.
,
147
(3–4), pp.
401
409
.
38.
Runnemalm
,
H.
, and
Hyun
,
S.
,
2000
, “
Three-Dimensional Welding Analysis Using an Adaptive Mesh Scheme
,”
Comput. Methods Appl. Mech. Eng.
,
189
(2), pp.
515
523
.
39.
Duranton
,
P.
,
Devaux
,
J.
,
Robin
,
V.
,
Gilles
,
P.
, and
Bergheau
,
J. M.
,
2004
, “
3D Modeling of Multipass Welding of a 316L Stainless Steel Pipe
,”
J. Mater. Process. Technol.
153–154
, pp.
457
463
.
40.
Brown
,
S. B.
, and
Song
,
H.
,
1993
, “
Rezoning and Dynamic Substructuring Techniques in FEM Simulation of Welding Process
,”
J. Eng. Ind.
,
115
(4), pp.
415
423
.
41.
Murakawa
,
H.
,
Oda
,
I.
,
Ito
,
S.
,
Serizawa
,
H.
,
Shibahara
,
M.
, and
Nishikawa
,
H.
,
2005
, “
Iterative Substructure Method for Fast Computation of Thermal Elastic Plastic Welding Problem
,”
J. Kansai Soc. Nav. Archit., Jpn.
,
243
, pp.
67
70
(in Japanese).
42.
Nishikawa
,
H.
,
Serizawa
,
H.
, and
Murakawa
,
H.
,
2005
, “
Development of Large-Scaled FEM for Analysis of Mechanical Problems in Welding
,”
J. Jpn. Soc. Nav. Archit. Ocean Eng.
,
2
, pp.
379
385
(in Japanese).
43.
Mochizuki
,
M.
,
Enomoto
,
K.
,
Okamoto
,
N.
,
Saitoh
,
H.
, and
Hayashi
,
E.
,
1994
, “
Study on Production Mechanism of Welding Residual Stress at the Juncture of a Pipe Penetrating a Thick Plate
,”
Q. J. Jpn. Weld. Soc.
,
12
(
4
), pp.
561
567
(in Japanese).
44.
ASME Boiler and Pressure Vessel Committee
,
1995
,
ASME Boiler and Pressure Vessel Code, Section II, Materials, Part D Properties
,
American Society of Mechanical Engineers
,
New York
.
45.
Special Metals
,
2008
,
INCONEL Alloy 600, Technical Bulletin
,
Special Metals Corporation
,
Huntington, WV
.
46.
Lee
,
J.
,
Jang
,
C.
,
Kim
,
J. S.
, and
Jin
,
T. E.
,
2007
, “
Mechanical Properties Evaluation in Inconel 82/182 Dissimilar Metal Welds
,” Transactions of SMiRT 19, Toronto, ON, Canada, Paper No. G04/4.
47.
Kim
,
J. W.
,
Lee
,
K.
,
Kim
,
J. S.
, and
Byun
,
T. S.
,
2009
, “
Local Mechanical Properties of Alloy 82/182 Dissimilar Weld Joint Between SA508 Gr.1a and F316 SS at RT and 320 °C
,”
J. Nucl. Mater.
,
384
(3), pp.
212
221
.
48.
US Nuclear Regulatory Commission (NRC)
,
2009
,
International Weld Residual Stress Round Robin Problem Statement, Version 1.0
,
US NRC
,
Rockville, MD
, pp.
1
7
.
49.
Maekawa
,
A.
,
Takahashi
,
S.
,
Serizawa
,
H.
, and
Murakawa
,
H.
,
2011
, “
Fast Computational Residual Stress Analysis for Welded Pipe Joint Based on Iterative Substructure Method
,”
ASME
Paper No. PVP2011-57237.
50.
Maekawa
,
T.
,
Serizawa
,
H.
,
Nakacho
,
K.
, and
Murakawa
,
H.
,
2013
, “
Fast Finite Element Analysis of Weld Residual Stress in Large-Diameter Thick-Walled Stainless Steel Pipe Joints and Its Experimental Validation
,”
Q. J. Japan Weld. Soc.
,
31
(
4
), pp.
129
133
.
51.
Maekawa
,
A.
,
Kawahara
,
A.
,
Serizawa
,
H.
, and
Murakawa
,
H.
,
2014
, “
Fast Simulation for Multi-Pass Welding Process Using Iterative Substructure Method: Investigation of Optimization and Efficient Computation
,”
ASME
Paper No. PVP2014-28185.
You do not currently have access to this content.