We present a cell-based smoothed radial point interpolation method (CS-RPIM) model for two-dimensional acoustic radiating problem by incorporating the perfectly matched layer method (PML). In this work, the computational region, truncated by PML, is discretized into triangular background cells. Each cell is further divided into several smoothing cells, and then the cell-based gradient smoothing operation is implemented throughout the smoothing cells. The pressure field function is approximated using the RPIM shape functions. The supporting node selection for shape function construction uses the T2L-scheme associated with edges of the background cells. The cell-based gradient smoothing operation provides proper softening effect, and makes the acoustic stiffness of the CS-RPIM model much softer than that of the FEM (finite element method)/PML model, which in turn significantly reduces the numerical dispersion error. Numerical results show that, compared with FEM–PML, the CS-RPIM achieves better absorbing effect in the PML, and higher accuracy in the computational region. This enables us to conclude that the CS-RPIM model with the PML can be well applied in solving acoustic radiation problems.

References

References
1.
Babuška
,
I.
,
Ihlenburg
,
F.
,
Paik
,
E. T.
, and
Sauter
,
S. A.
,
1995
, “
A Generalized Finite Element Method for Solving the Helmholtz Equation in Two Dimensions With Minimal Pollution
,”
Comput. Methods Appl. Mech. Eng.
,
128
(
3–4
), pp.
325
359
.
2.
Bouillard
,
Ph.
, and
Suleau
,
S.
,
1998
, “
Element-Free Garlekin Solutions for Helmholtz Problems: Formulation and Numerical Assessment of the Pollution Effect
,”
Comput. Methods Appl. Mech. Eng.
,
162
(
1–4
), pp.
317
335
.
3.
Petersen
,
S.
,
Dreyer
,
D.
, and
Estorff
,
O. V.
,
2006
, “
Assessment of Finite and Spectral Element Shape Functions or Efficient Iterative Simulations of Interior Acoustics
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
44–47
), pp.
6463
6478
.
4.
Estorff
,
O.
,
2000
,
Boundary Elements in Acoustics: Advances and Applications
,
WIT Press
,
Southampton, UK
.
5.
Tomioka
,
S.
, and
Nishiyama
,
S.
,
2010
, “
Analytical Regularization of Hypersingular Integral for Helmholtz Equation in Boundary Element Method
,”
Eng. Anal. Boundary Elem.
,
34
(
4
), pp.
393
404
.
6.
Burnett
,
D.
,
1994
, “
A Three-Dimensional Acoustic Infinite Element Based on a Prolate Spheroidal Multipole Expansion
,”
J. Acoust. Soc. Am.
,
96
(
5
), pp.
2798
2816
.
7.
Shirron
,
J. J.
, and
Dey
,
S.
,
2002
, “
Acoustic Infinite Elements for Non-Separable Geometries
,”
Comput. Methods Appl. Mech. Eng.
,
191
(
37–38
), pp.
3149
4123
.
8.
Engquist
,
B.
, and
Majda
,
A.
,
1977
, “
Absorbing Boundary Conditions for the Numerical Simulation of Waves
,”
Math. Comput.
,
31
(
139
), pp.
629
651
.
9.
Collino
,
F.
, and
Monk
,
P.
,
1998
, “
The Perfectly Matched Layer in Curvilinear Coordinates
,”
SIAM J. Sci. Comput.
,
19
(
6
), pp.
2061
2090
.
10.
Nannen
,
L.
, and
Schädle
,
A.
,
2011
, “
Hardy Space Infinite Elements for Helmholtz-Type Problems With Unbounded Inhomogeneities
,”
Wave Motion
,
48
(
2
), pp.
116
129
.
11.
French
,
D. A.
, and
Peterson
,
T. E.
,
1996
, “
A Continuous Space–Time Finite Element Method for the Wave Equation
,”
Math. Comput.
,
65
(
214
), pp.
491
506
.
12.
Bouillard
,
Ph.
, and
Ihlenburg
,
F.
,
1999
, “
Error Estimation and Adaptivity for the Finite Element Method in Acoustics: 2D and 3D Applications
,”
Comput. Methods Appl. Mech. Eng.
,
176
(
1–4
), pp.
147
163
.
13.
Wu
,
S. W.
,
Lian
,
S. H.
, and
Hsu
,
L. H.
,
1998
, “
A Finite Element Model for Acoustic Radiation
,”
J. Sound Vib.
,
215
(
3
), pp.
489
498
.
14.
Harari
,
I.
,
Slavutin
,
M.
, and
Turkel
,
E.
,
2000
, “
Analytical and Numerical Studies of a Finite Element PML for the Helmholtz Equation
,”
J. Comput. Acoust.
,
8
(
1
), pp.
121
137
.
15.
Berenger
,
J. P.
,
1994
, “
A Perfectly Matched Layer for the Absorption of Electromagnetic Waves
,”
J. Comput. Phasis
,
114
(
1
), pp.
185
200
.
16.
Thompson
,
L.
, and
Pinsky
,
P.
,
1995
, “
A Galerkin Least-Squares Finite Element Method for the Two-Dimensional Helmholtz Equation
,”
Int. J. Numer. Methods Eng.
,
38
(
3
), pp.
371
397
.
17.
Melenk
,
J. M.
, and
Babuška
,
I.
,
1996
, “
The Partition of Unity Finite Element Method: Basic Theory and Applications
,”
Comput. Methods Appl. Mech. Eng.
,
139
(
1–4
), pp.
289
314
.
18.
Harari
,
I.
, and
Magoules
,
F.
,
2004
, “
Numerical Investigations of Stabilized Finite Element Computations for Acoustics
,”
Wave Motion
,
39
(
4
), pp.
339
349
.
19.
He
,
Z. C.
,
Cheng
,
A. G.
,
Zhang
,
G. Y.
,
Zhong
,
Z. H.
, and
Liu
,
G. R.
,
2011
, “
Dispersion Error Reduction for Acoustic Problems Using the Edge-Based Smoothed Finite Element Method (ES-FEM)
,”
Int. J. Numer. Methods Eng.
,
86
(
11
), pp.
1322
1338
.
20.
Liu
,
G. R.
,
2008
, “
A Generalized Gradient Smoothing Technique and the Smoothed Bilinear Form for Galerkin Formulation of Wide Class of Computational Methods
,”
Int. J. Comput. Methods
,
5
(
2
), pp.
199
236
.
21.
He
,
Z. C.
,
Liu
,
G. R.
, and
Zhong
,
Z. H.
,
2009
, “
An Edge-Based Smoothed Finite Element Method (ES-FEM) for Analyzing Three-Dimensional Acoustic Problems
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
1–4
), pp.
20
33
.
22.
Cui
,
X. Y.
,
Liu
,
G. R.
,
Li
,
G. Y.
, and
Sun
,
G. Y. A.
,
2010
, “
A Cell-Based Smoothed Radial Point Interpolation Method (CS-RPIM) for Static and Free Vibration of Solids
,”
Eng. Anal. Boundary Elem.
,
34
(
2
), pp.
144
157
.
23.
Yao
,
L. Y.
,
Yu
,
D. J.
, and
Zhou
,
J. W.
,
2012
, “
Numerical Treatment of 2D Acoustic Problems With the Cell-Based Smoothed Radial Point Interpolation Method
,”
Appl. Acoust.
,
73
(
6–7
), pp.
557
574
.
24.
Yao
,
L. Y.
,
Zhou
,
J. W.
, and
Zhou
,
Z.
,
2013
, “
Numerical Study of the Compartment Cavity Problem Using a Novel Cell-Based Smoothed Radial Point Interpolation Method
,”
SAE
Paper No. 2013-01-1988.
25.
Shirron
,
J. J.
, and
Giddings
,
T. E.
,
2006
, “
A Finite Element Model for Acoustic Scattering From Objects Near a Fluid–Fluid Interface
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
1–3
), pp.
279
288
.
26.
LMS
,
1999
, “
SYSNOISE Rev 5.4. A Software Tool for Vibro-Acoustic Simulation
,”
LMS International
,
Leuven, Belgium
.
You do not currently have access to this content.