Gas–cyclone body coupling vibration is one kind of vibration caused by air pulsation. This coupling vibration causes widespread damage and deformation of three-stage cyclone separator used in residue fluid catalytic cracking. After theoretically analyzing the mechanism of the generation of the gas–cyclone body coupling vibration, the numerical simulation of three-dimensional swirling flow the cyclone separator was performed by using Reynolds stress model (RSM). The results showed the existence of precessing vortex core (PVC) in the cyclone separator. The PVC phenomenon and motion of PVC were described in detail. Furthermore, the amplitude and frequency of gas fluctuation in the PVC region at different axial positions were quantitatively analyzed. The simulation results agreed with the experimental results of laser Doppler velocimetry (LDV). Finally, characteristics of PVC in cyclone separator with a novel vortex finder were designed, and the results showed that the novel vortex finder can reduce flow vibration.

References

References
1.
Pisarev
,
G. I.
, and
Hoffmann
,
A. C.
,
2012
, “
Effect of the End of the Vortex’ Phenomenon on the Particle Motion and Separation in a Swirl Tube Separator
,”
Powder Technol.
,
222
(
5
), pp.
101
107
.
2.
Derksen
,
J. J.
,
van den Akkar
,
H. E. A.
, and
Sundaresan
,
S.
,
2008
, “
Two-Way Coupled Large-Eddy Simulation of Gas-Solid Flow in Cyclone Separators
,”
AIChE J.
,
54
(
4
), pp.
872
885
.
3.
Shukla
,
S. K.
,
Shukla
,
P.
, and
Ghosh
,
P.
,
2013
, “
The Effect of Modeling of Velocity Fluctuation on Prediction of Collection Efficiency of Cyclone Separators
,”
Appl. Math. Modell.
,
37
(
8
), pp.
5774
5789
.
4.
Hreiz
,
R.
,
Gentric
,
C.
, and
Midoux
,
N.
,
2011
, “
Numerical Investigation of Swirling Flow in Cylindrical Cyclone
,”
Chem. Eng. Res. Des.
,
89
(
12
), pp.
2521
2539
.
5.
Griffiths
,
W. D.
, and
Boysan
,
F.
,
1996
, “
Computational Fluid Dynamics (CFD) and Empirical Modeling of the Performance of a Number of Cyclone Samples
,”
J. Aerosol Sci.
,
27
(
2
), pp.
281
304
.
6.
Cortes
,
C.
, and
Gil
,
A.
,
2007
, “
Modeling the Gas and Particle Flow Inside Cyclone Separators
,”
Prog. Energy Combust. Sci.
,
33
(
5
), pp.
409
452
.
7.
Kepa
,
A.
,
2010
, “
Division of Outlet Flow in a Cyclone Vortex Finder: The CFD Calculations
,”
Sep. Purif. Technol.
,
75
(
2
), pp.
127
131
.
8.
Qiu
,
Y. F.
,
Deng
,
B. Q.
, and
Kim
,
C. N.
,
2012
, “
Numerical Study of the Flow Field and Separation Efficiency of a Divergent Cyclone
,”
Powder Technol.
,
217
(
2
), pp.
231
237
.
9.
Gao
,
X.
,
Chen
,
J. F.
,
Feng
,
J. M.
, and
Peng
,
X. Y.
,
2014
, “
Numerical Investigation of the Effects of the Central Channel on the Flow Field in an Oil-Gas Cyclone Separator
,”
Comput. Fluids
,
92
(
3
), pp.
45
55
.
10.
Raoufi
,
A.
,
Shams
,
M.
,
Farzaneh
,
M.
, and
Ebrahimi
,
R.
,
2008
, “
Numerical Simulation and Optimization of Fluid Flow in Cyclone Vortex Finder
,”
Chem. Eng. Process.
,
47
(
1
), pp.
128
137
.
11.
Elsayed
,
K.
, and
Lacor
,
C.
,
2011
, “
Numerical Modelling of the Flow Field and Performance in Cyclones of Different Cone-Tip Diameters
,”
Comput. Fluids
,
51
(
1
), pp.
48
59
.
12.
Elsayed
,
K.
, and
Lacor
,
C.
,
2013
, “
The Effect of Cyclone Vortex Finder Dimensions on the Flow Pattern and Performance Using LES
,”
Comput. Fluids
,
71
(
30
), pp.
224
239
.
13.
Boysan
,
F.
,
Ayers
,
W. H.
, and
Swithenbank
,
J.
,
1982
, “
A Fundamental Mathematical Modeling Approach to Cyclone Design
,”
Chem. Eng. Res. Des.
,
60
(
4
), pp.
222
230
.
14.
Shukla
,
S. K.
,
Shukla
,
P.
, and
Ghosh
,
P.
,
2011
, “
Evaluation of Numerical Schemes Using Different Simulation Methods for the Continuous Phase Modeling of Cyclone Separators
,”
Adv. Powder Technol.
,
22
(
2
), pp.
209
219
.
15.
Horvath
,
A.
,
Jordan
,
C.
, and
Harasek
,
M.
,
2008
, “
Influence of Vortex-Finder Diameter on Axial Gas Flow in Simple Cyclone
,”
Chem. Prod. Process Model.
,
3
(
1
), pp.
1
26
.
16.
Raoufi
,
A.
,
Shams
,
M.
, and
Kanani
,
H.
,
2008
, “
CFD Analysis of Flow Field in Square Cyclones
,”
Powder Technol.
,
191
(
3
), pp.
349
357
.
17.
Martignoni
,
W. P.
,
Bernardo
,
S.
, and
Quintani
,
C. L.
,
2007
, “
Evaluation of Cyclone Geometry and Its Influence on Performance Parameters by Computational Fluid Dynamics (CFD)
,”
Braz. J. Chem. Eng.
,
24
(
1
), pp.
83
94
.
18.
Oh
,
J.
,
Choi
,
S.
, and
Kim
,
J.
,
2015
, “
Numerical Simulation of an Internal Flow Field in a Uniflow Cyclone Separator
,”
Powder Technol.
,
274
(
4
), pp.
135
145
.
19.
Song
,
J. F.
,
Sun
,
G. G.
,
Chao
,
Z. X.
,
Wei
,
Y. D.
, and
Shi
,
M. X.
,
2010
, “
Gas Flow Behavior and Residence Time Distribution in a FCC Disengage Vessel With Different Coupling Configurations Between Two-Stage Separators
,”
Powder Technol.
,
201
(3), pp.
258
265
.
20.
Shalaby
,
H.
,
Pachler
,
K.
,
Wozniak
,
K.
, and
Wozniak
,
G.
,
2005
, “
Comparative Study of the Continuous Phase Flow in a Cyclone Separator Using Different Turbulence Models
,”
Int. J. Numer. Methods Fluids
,
48
(
11
), pp.
1175
1197
.
21.
Derksen
,
J. J.
,
Sundaresan
,
S.
, and
van den Akker
,
H. E. A.
,
2006
, “
Simulation of Mass-Loading Effects in Gas-Solid Cyclone Separators
,”
Powder Technol.
,
163
(1–3), pp.
59
68
.
22.
Shalaby
,
H.
,
Wozniak
,
K.
, and
Woaniak
,
G.
,
2006
, “
Particle-Laden Flow Simulation in a Cyclone Separator
,”
Appl. Math. Mech.
,
6
(
1
), pp.
547
548
.
23.
Jiao
,
J. Y.
,
Liu
,
Z. L.
, and
Zheng
,
Y.
,
2007
, “
Evaluations and Modifications on Reynolds Stress Model in Cyclone Simulations
,”
Chem. Eng. Technol.
,
30
(
1
), pp.
15
20
.
24.
Liu
,
B. C.
,
1994
,
Engineering Computational Mechanics
,
Mechanical Industry Press
,
Beijing, China
, pp.
338
341
.
You do not currently have access to this content.