Pressure cycle tests were performed on two types of Cr–Mo steel pressure vessels with notches machined on their inside under hydrogen-gas pressures, between 0.6 and 45 MPa at room temperature. Fatigue crack growth (FCG) and fracture toughness tests of the Cr–Mo steels samples from the vessels were also carried out in gaseous hydrogen. The Cr–Mo steels showed accelerated FCG rates in gaseous hydrogen compared to ambient air. The fracture toughness of the Cr–Mo steels in gaseous hydrogen was significantly smaller than that in ambient air. Four pressure vessels were tested with gaseous hydrogen. All pressure vessels failed by leak-before-break (LBB). The LBB failure of one pressure vessel could not be estimated by using the fracture toughness in gaseous hydrogen KIC,H; accordingly, the LBB assessment based on KIC,H is conservative and there is a possibility that KIC,H does not provide a reasonable assessment of LBB. In contrast, the fatigue lives of all pressure vessels could be estimated by using the accelerated FCG rates in gaseous hydrogen.

References

References
1.
Murakami
,
Y.
,
Matsuoka
,
S.
,
Kondo
,
Y.
, and
Nishimura
,
S.
,
2012
,
Mechanism of Hydrogen Embrittlement and Guide for Fatigue Design
,
Yokendo Ltd.
,
Tokyo, Japan
.
2.
Gangloff
,
R. P.
, and
Somerday
,
B. P.
,
2012
,
Gaseous Hydrogen Embrittlement of Materials in Energy Technologies
,
Woodhead Publishing Limited
,
Cambridge
.
3.
Hirth
,
J. P.
,
1980
, “
Effects of Hydrogen on the Properties of Iron and Steel
,”
Metall. Mater. Trans. A
,
11
(
6
), pp.
861
890
.
4.
Matsuo
,
T.
,
Yamabe
,
J.
,
Fukushima
,
Y.
,
Matsuoka
,
S.
, and
Murakami
,
Y.
,
2010
, “
Effect of Microstructure on Charpy Impact Properties and LBB Assessment of SCM435 Steel for Storage Cylinders of 35 MPa Hydrogen Stations
,”
J. Soc. Mater. Sci., Jpn.
,
59
(
12
), pp.
24
31
.
5.
Matsuoka
,
S.
,
Homma
,
N.
,
Tanaka
,
H.
,
Fukushima
,
Y.
, and
Murakami
,
Y.
,
2007
, “
Effect of Hydrogen on the Tensile Properties of 900-MPa-Class JIS-SCM435 Low-Alloy-Steel for Use in Storage Cylinder of Hydrogen Station
,”
J. Jpn. Inst. Met.
,
70
(
12
), pp.
1002
1011
.
6.
Escot
,
M.
,
Briottet
,
L.
,
Moro
,
I.
,
Andrieu
,
E.
,
Blanc
,
C.
,
Odemer
,
G.
,
Furtado
,
J.
, and
Salais
,
D.
,
2014
, “
Hydrogen-Enhanced Fatigue of a Cr-Mo Steel for Gaseous Hydrogen Storage
,”
SteelyHydrogen 2014 Conference Proceedings
, Ghent, pp.
416
432
.
7.
Tanaka
,
H.
,
Homma
,
N.
,
Matsuoka
,
S.
, and
Murakami
,
Y.
,
2007
, “
Effect of Hydrogen and Frequency on Fatigue Behavior of SCM435 Steel for Storage Cylinder of Hydrogen Station
,”
Trans. Jpn. Soc. Mech. Eng., A
,
73
, pp.
1358
1365
.
8.
Kondo
,
Y.
,
Kubota
,
M.
, and
Shimada
,
K.
,
2010
, “
Hydrogen Enhanced Crack Propagation of SCM440H Low-Alloy Steel Under Long-Term Varying Load
,”
Eng. Fract. Mech.
,
77
(
11
), pp.
1963
1974
.
9.
Marchi
,
C. S.
,
Harris
,
A.
,
Yip
,
M.
,
Somerday
,
B. P.
, and
Nibur
,
K. A.
,
2012
, “
Pressure Cycling of Steel Pressure Vessels With Gaseous Hydrogen
,”
ASME
Paper No. PVP2012-78709.
10.
Wada
,
Y.
,
2013
, “
Effect of Cycle Frequency on Fatigue Crack Propagation Behavior for Steels in Hydrogen Storage
,”
ASME
Paper No. PVP2013-97485.
11.
Bortot
,
P.
,
Vergani
,
L.
, and
Bolzoni
,
F.
,
2014
, “
Investigation on Hydrogen Enhanced Fatigue Crack Growth of a Quenched and Tempered Steel for Hydrogen Applications
,”
SteelyHydrogen 2014 Conference Proceedings
, Ghent, Belgium, pp.
555
561
.
12.
Tvrdý
,
M.
,
Havel
,
S.
,
Hyspecká
,
L.
, and
Mazanec
,
K.
,
1981
, “
Hydrogen Embrittlement of CrMo and CrMoV Pressure Vessel Steels
,”
Int. J. Pressure Vessels Piping
,
9
(
5
), pp.
355
365
.
13.
Gangloff
,
R. P.
,
2003
, “
Hydrogen Assisted Cracking of High Strength Alloys
,”
Comprehensive Structural Integrity
,
I.
Milne
,
B. L.
Karihaloo
, and
R. O.
Ritchie
, eds.,
Elsevier Science
,
New York
, pp.
31
101
.
14.
Ikemiya
,
H.
,
Kubota
,
M.
, and
Kondo
,
Y.
,
2011
, “
Effect of Loading Rate and Tempering Temperature on Fracture Toughness of Hydrogen-Charged Low Alloy Steel SCM440
,”
Trans. Jpn. Soc. Mech. Eng., A
,
77
, pp.
483
494
.
15.
Nibur
,
K. A.
,
Somerday
,
B. P.
,
Marchi
,
C. S.
,
Foulk
,
J. W.
,
Dadfarnia
,
M.
, and
Sofronis
,
P.
,
2013
, “
The Relationship Between Crack-Tip and Subcritical Cracking Threshold for Steels in High-Pressure Hydrogen Gas
,”
Metall. Mater. Trans. A
,
44
(
1
), pp.
248
268
.
16.
Chandler
,
W. T.
, and
Walter
,
R. J.
,
1974
, “
Testing to Determine the Effect of High-Pressure Hydrogen Environments on the Mechanical Properties of Metals
,”
Hydrogen Embrittlement Testing
,
L.
Raymontd
, ed.,
ASTM STP543, West Conshohocken
,
PA
, pp.
170
197
.
17.
Walter
,
R. J.
, and
Chandler
,
W. T.
,
1968
, “
Effect of High-Pressure Hydrogen on Metals
,” The 1968 Materials Engineering Exposition and Congress, Detroit, MI.
18.
Chandler
,
W. T.
, and
Walter
,
R. J.
,
1975
, “
Hydrogen-Environment Embrittlement of Metals and Its Control
,”
Hydrogen Economy Miami Energy Conference
,
Plemum Press
,
New York
, pp.
1057
1078
.
19.
NASA
,
1997
,
Safety Standard for Hydrogen and Hydrogen Systems
,
NSS 1740.16
,
Washington, DC
.
20.
Sun
,
Z.
,
Benoit
,
G.
,
Moriconi
,
C.
,
Hamon
,
F.
,
Halm
,
D.
,
Hamon
,
F.
, and
Hénaff
,
G.
,
2011
, “
Fatigue Crack Propagation Under Gaseous Hydrogen in a Precipitation-Hardened Martensitic Stainless Steel
,”
Int. J. Hydrogen Energy
,
36
(
14
), pp.
8641
8644
.
21.
ASTM E647-08e1
,
2011
,
Standard Test Method for Measurement of Fatigue Crack Growth Rates
,
ASTM International
,
West Conshohocken, PA
.
22.
Matsuo
,
T.
,
Yamabe
,
J.
,
Furukawa
,
H.
,
Seki
,
K.
,
Shimizu
,
K.
,
Watanabe
,
S.
, and
Matsuoka
,
S.
,
2014
, “
Development of New Strain Gage for High-Pressure Hydrogen Gas Use
,”
Exp. Mech.
,
54
(
3
), pp.
431
442
.
23.
ASTM E1820-09
,
2010
,
Standard Test Method for Measurement of Fracture Toughness
,
ASTM International
,
West Conshohocken, PA
.
24.
KHK S 0220
,
2010
, KHK Standard for Pressure Equipments Containing Ultra High Pressure Gas, The High Pressure Gas Safety Institute of Japan.
25.
ASME Boiler and Pressure Vessel Code (BPVC), Sec VIII, Div 3, 2010, Alternative Rules for Construction of High Pressure Vessels, ASME.
26.
Cipolla
,
R. C.
,
1995
, “
Technical Basis for the Revised Stress Intensity Factor Equation for Surface Flaws in ASME SEC XI Appendix A
,”
ASME
Paper No. PVP-1995-Vol.313-1.
27.
Shen
,
G.
, and
Glinka
,
G.
,
1991
, “
Weight Functions for a Surface Semi-Elliptical Crack in a Finite Thickness Plate
,”
Theor. Appl. Fract. Mech.
,
15
(
3
), pp.
247
255
.
28.
Newman
,
J. C.
, Jr.
, and
Raju
,
I. S.
,
1981
, “
Stress Intensity Factor Equations for Cracks in Three-Dimensional Finite Bodies
,” NASA Technical Memo No. 83200, pp.
1
49
.
29.
Matsuo
,
T.
,
Matsuoka
,
S.
, and
Murakami
,
Y.
,
2010
, “
Fatigue Crack Growth Properties of Quenched and Tempered Cr-Mo Steel in 0.7 MPa Hydrogen Gas
,”
18th European Conference on Fracture
, Dresden, Germany, Proceeding No. 366.
30.
Somerday
,
B. P.
,
Sofronis
,
P.
,
Nibur
,
K. A.
,
San Marchi
,
C.
, and
Kirhheim
,
R.
,
2013
, “
Elucidating the Variables Affecting Accelerated Fatigue Crack Growth of Steels in Hydrogen Gas With Low Oxygen Concentrations
,”
Acta Mater.
,
61
(
16
), pp.
6153
6170
.
31.
Yamabe
,
J.
,
Matsumoto
,
T.
,
Matsuoka
,
S.
, and
Murakami
,
Y.
,
2012
, “
A New Mechanism in Hydrogen-Enhanced Fatigue Crack Growth Behavior of a 1900-MPa-Class High-Strength Steel
,”
Int. J. Fract.
,
177
(
2
), pp.
141
162
.
32.
Sofronis
,
P.
, and
McMeeking
,
R. M.
,
1989
, “
Numerical Analysis of Hydrogen Transport Near a Blunting Crack Tip
,”
J. Mech. Phys. Solids
,
37
(
3
), pp.
317
350
.
33.
Birnbaum
,
H. K.
, and
Sofronis
,
P.
,
1994
, “
Hydrogen-Enhanced Localized Plasticity: A Mechanism for Hydrogen-Related Fracture
,”
Mater. Sci. Eng., A
,
176
(
1–2
), pp.
191
202
.
34.
Matsuoka
,
S.
,
Tanaka
,
H.
,
Homma
,
N.
, and
Murakami
,
Y.
,
2011
, “
Influence of Hydrogen and Frequency on Fatigue Crack Growth Behavior of Cr-Mo Steel
,”
Int. J. Fract.
,
168
(
1
), pp.
101
112
.
35.
Matsuoka
,
S.
,
Tutsumi
,
N.
, and
Murakami
,
Y.
,
2008
, “
Effects of Hydrogen on Fatigue Crack Growth and Stretch Zone of 0.08 Mass% Low Carbon Steel Pipe
,”
Trans. Jpn. Soc Mech. Eng., A
,
74
(
748
), pp.
1528
1537
.
36.
Tokaji
,
K.
,
Ando
,
Z.
, and
Nagae
,
K.
,
1986
, “
The Effect of Sheet Thickness on Near-Threshold Fatigue Crack Propagation and Oxide- and Roughness-Induced Crack Closure
,”
Trans. Jpn. Soc. Mech. Eng., A
,
52
, pp.
655
662
.
37.
Nagai
,
A.
,
Toyosada
,
M.
, and
Okamoto
,
T.
,
1975
, “
A Study on the Fatigue Crack Growth 9% Ni Steel Plate
,”
Eng. Fract. Mech.
,
7
(
3
), pp.
481
490
.
38.
Kayakabe
,
H.
,
Kobayashi
,
H.
,
Hirano
,
K.
, and
Nakazawa
,
H.
,
1980
, “
The Influence of Hydrogen on Fracture Toughness of High Strength Steels
,”
Trans. Jpn. Soc. Mech. Eng., A
,
46
, pp.
1360
1368
.
39.
ANSI/CSA CHMC 1-2014
,
2014
,
Test Methods for Evaluating Material Compatibility in Compressed Hydrogen Applications-Metals
,
CSA Group
.
40.
Matsumoto
,
T.
,
Itoga
,
H.
,
Hirabayashi
,
S.
,
Kubota
,
M.
, and
Matsuoka
,
S.
,
2013
, “
Effect of Displacement Velocity on Elastic Plastic Fracture Toughness of SM490B Carbon Steel Plate in 0.7 MPa Hydrogen Gas
,”
Trans. Jpn. Soc. Mech. Eng., A
,
79
(
804
), pp.
1210
1225
.
41.
JIS K 0512,
1995
, Hydrogen, Japan Industrial Standards Committee.
You do not currently have access to this content.