An improved one-dimensional (1D) model—compared to previous work by the authors—is proposed, which is able to predict the acceleration and shortening of a single liquid slug propagating in a straight pipe with a downstream bend. The model includes holdup at the slug's tail and flow separation at the bend. The obtained analytical and numerical results are validated against experimental data. The effects of holdup, driving pressure and slug length are examined in a parameter variation study.

References

1.
Hou
,
Q.
,
Tijsseling
,
A. S.
, and
Bozkuş
,
Z.
,
2014
, “
Dynamic Force on an Elbow Caused by a Traveling Liquid Slug
,”
ASME J. Pressure Vessel Technol.
,
136
(3), p.
031302
.
2.
Bozkuş
,
Z.
, and
Wiggert
,
D. C.
,
1997
, “
Liquid Slug Motion in a Voided Line
,”
J. Fluids Struct.
,
11
(8), pp.
947
963
.
3.
Bozkuş
,
Z.
,
Baran
,
Ö.
, and
Ger
,
M.
,
2004
, “
Experimental and Numerical Analysis of Transient Liquid Slug Motion in a Voided Line
,”
ASME J. Pressure Vessel Technol.
,
126
(2), pp.
241
249
.
4.
Tijsseling
,
A. S.
, and
Vardy
,
A. E.
,
2004
, “
Time Scales and FSI in Unsteady Liquid-Filled Pipe Flow
,”
The 9th International Conference on Pressure Surges,
S. J.
Murray
ed.,
Chester, UK
,
BHR Group
, Cranfield, UK, pp.
135
150
.
5.
Tijsseling
,
A. S.
, and
Vardy
,
A. E.
,
2008
, “
Time Scales and FSI in Oscillatory Liquid-Filled Pipe Flow
,”
The 10th International Conference on Pressure Surges
,
S.
Hunt
ed.,
Edinburgh, UK
,
BHR Group
, Cranfield, UK, pp.
553
568
.
6.
Young
,
H. D.
, and
Freedman
,
R. A.
,
2014
,
University Physics
, 13th ed., Section 8.6,
Pearson Education
, Harlow, UK.
7.
Bozkuş
,
Z.
,
1991
, “
The Hydrodynamics of an Individual Transient Slug in a Voided Line
,” Ph.D. thesis, Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI.
8.
Heath
,
M. T.
,
2002
,
Scientific Computing
, 2nd ed.,
McGraw-Hill
, New York, Chap. 9.
9.
Chu
,
S. S.
,
2003
, “
Separated Flow in Bends of Arbitrary Turning Angles, Using the Hodograph Method and Kirchhoff's Free Streamline Theory
,”
ASME J. Fluids Eng.
,
125
(3), pp.
438
442
.
10.
Hou
,
Q.
,
Kruisbrink
,
A. C. H.
,
Pearce
,
F. R.
,
Tijsseling
,
A. S.
, and
Yue
,
T.
,
2014
, “
Smoothed Particle Hydrodynamics Simulations of Flow Separation at Bends
,”
Comput. Fluids
,
90
, pp.
138
146
.
11.
Kayhan
,
B. A.
, and
Bozkuş
,
Z.
,
2011
, “
A New Method for Prediction of the Transient Force Generated by a Liquid Slug Impact on an Elbow of an Initially Voided Line
,”
ASME J. Pressure Vessel Technol.
,
133
(2), p.
021701
.
12.
Koppel
,
T.
, and
Ainola
,
L.
,
2006
, “
Identification of Transition to Turbulence in a Highly Accelerated Start-Up Pipe Flow
,”
ASME J. Fluids Eng.
,
128
(
4
), pp.
680
686
.
13.
He
,
S.
,
Ariyaratne
,
C.
, and
Vardy
,
A. E.
,
2008
, “
A Computational Study of Wall Friction and Turbulence Dynamics in Accelerating Pipe Flows
,”
Comput. Fluids
37
(
6
), pp.
674
689
.
14.
He
,
S.
,
Ariyaratne
,
C.
, and
Vardy
,
A. E.
,
2011
, “
Wall Shear Stress in Accelerating Turbulent Pipe Flow
,”
J. Fluid Mech.
,
685
, pp.
440
460
.
15.
Annus
,
I.
,
Koppel
,
T.
,
Sarv
,
L.
, and
Ainola
,
L.
,
2013
, “
Development of Accelerating Pipe Flow Starting From Rest
,”
ASME J. Fluids Eng.
,
135
(
11
), p.
111204
.
You do not currently have access to this content.