In this paper, the general solution of steady-state 1D radially symmetric mechanical and thermal stresses and electrical and mechanical displacements for a hollow thick cylinder made of fluid-saturated functionally graded poro piezoelectric materials (FGPPMs) is developed. The general form of thermal and mechanical boundary conditions is considered on the inside and outside surfaces. A direct method is used to solve the heat conduction equation and nonhomogenous system of partial differential Navier equations, using complex Fourier series and power law functions method. The material properties, except the Poisson ratio, are assumed to depend on the radial variable r and they are expressed as power law functions.

References

References
1.
Qin
,
Q.-H.
,
2001
,
Fracture Mechanics of Piezoelectric Materials
,
WIT
,
Southampton
.
2.
Lutz
,
M. P.
, and
Zimmerman
,
R. W.
,
1996
, “
Thermal Stresses and Effective Thermal Expansion Coefficient of Functionally Graded Sphere
,”
J. Therm. Stresses
,
19
(1), pp.
39
54
.
3.
Zimmerman
,
R. W.
, and
Lutz
,
M. P.
,
1999
, “
Thermal Stresses and Thermal Expansion in a Uniformly Heated Functionally Graded Cylinder
,”
J. Therm. Stresses
,
22
(2), pp.
177
188
.
4.
Jabbari
,
M.
,
Sohrabpour
,
S.
, and
Eslami
,
M. R.
,
2003
, “
General Solution for Mechanical and Thermal Stresses in Functionally Graded Hollow Cylinder Due to Radially Symmetric Loads
,”
ASME J. Appl. Mech.
,
70
(1), pp.
111
118
.
5.
Jabbari
,
M.
,
Sohrabpourb
,
S.
, and
Eslami
,
M. R.
,
2002
, “
Mechanical and Thermal Stresses in a Functionally Graded Hollow Cylinder Due to Radially Symmetric Loads
,”
Int. J. Pressure Vessels Piping
,
79
(
7
), pp.
493
497
.
6.
Jabbari
,
M.
,
Bahtui
,
A.
, and
Eslami
,
M. R.
,
2009
, “
Axisymmetric Mechanical and Thermal Stresses in Thick Short Length Functionally Graded Material Cylinder
,”
Int. J. Pressure Vessels Piping
,
86
(5), pp.
296
306
.
7.
Jourine
,
S.
,
Valkoo
,
P. P.
, and
Kronenberg
,
A. K.
,
2004
, “
Modelling Poroelastic Hollow Cylinder Experiments With Realistic Boundary Conditions
,”
Int. J. Numer. Anal. Methods Geomech.
,
28
(12), pp.
1189
1205
.
8.
Kanj
,
M.
,
Abousleiman
,
Y.
, and
Ghanem
,
R.
,
2003
, “
Poromechanics of Anisotropic Hollow Cylinders
,”
ASCE J. Eng. Mech.
,
129
(
11
), p.
1277
.
9.
Abousleiman
,
Y.
, and
Ekboote
,
S.
,
2005
, “
Solutions for Inclined Borehole in Porothermoelastic Transversely Isotropic Medium
,”
ASME J. Appl. Mech.
,
72
(
2
), pp.
102
114
.
10.
Chen
,
P. Y. P.
,
1980
, “
Axisymmetric Thermal Stresses in an Anisotropic Finite Hollow Cylinder
,”
J. Therm. Stresses
,
6
(
2–4
), pp.
197
205
.
11.
Bai
,
B.
,
2006
, “
Fluctuation Responses of Saturated Poro Media Subjected to Cyclic Thermal Loading
,”
Comput. Geotech.
,
33
(8), pp.
396
403
.
12.
Ding
,
H. J.
, and
Chen
,
W. Q.
,
2001
,
Three Dimensional Problems of Piezoelasticity
,
Nova Science Publishers
,
New York
.
13.
Ding
,
H. J.
,
Wang
,
H. M.
, and
Chen
,
W. Q.
,
2004
, “
Analytical Solution of a Special Non-Homogeneous Pyroelectric Hollow Cylinder for Piezothermoelastic Axisymmetric Plane Strain Dynamic Problems
,”
Appl. Math. Comput.
,
151
(2), pp.
423
441
.
14.
Dai
,
H. L.
, and
Wang
,
X.
,
2005
, “
Thermo-Electro-Elastic Transient Responses in Piezoelectric Hollow Structures
,”
Int. J. Solids Struct.
,
42
(3–4), pp.
1151
1171
.
15.
Kapuria
,
S.
,
Ahmed
,
A.
, and
Dumir
,
P. C.
,
2004
, “
Static and Dynamic Thermo-Electro-Mechanical Analysis of Angle-Ply Hybrid Piezoelectric Beams Using an Efficient Coupled Zigzag Theory
,”
Compos. Sci. Technol.
,
64
(16), pp.
2463
2475
.
16.
Ding
,
H. J.
,
Wang
,
H. M.
, and
Ling
,
D. S.
,
2003
, “
Analytical Solution of a Pyroelectric Hollow Cylinder for Piezothermoelastic Axisymmetric Dynamic Problems
,”
J. Therm. Stresses
,
26
(3), pp.
261
276
.
17.
Kirilyuk
,
V. S.
,
2006
, “
On the Relationship Between the Solutions of Static Contact Problems of Elasticity and Electroelasticity for a Half-Space
,”
Int. Appl. Mech.
,
42
(
11
), pp. 1256–1269.
18.
Wu
,
C. C. M.
,
Kahn
,
M.
, and
Moy
,
W.
,
1996
, “
Piezoelectric Ceramics With Functionally Gradients a New Application in Material Design
,”
J. Am. Ceram. Soc.
,
79
(3), pp.
809
812
.
19.
Shelley
,
W. F.
,
Wan
,
S.
, and
Bowman
,
K. J.
,
1999
, “
Functionally Graded Piezoelectric Ceramics
,”
Mater. Sci. Forum
,
308–311
, pp.
515
520
.
20.
Zhu
,
X. H.
,
Zu
,
J.
,
Meng
,
Z. Y.
,
Zhu
,
J. M.
,
Zhou
,
S. H.
,
Li
,
Q.
,
Liu
,
Z.
, and
Ming
,
N.
,
2000
, “
Micro Displacement Characteristics and Microstructures of Functionally Graded Piezoelectric Ceramic Actuator
,”
Mater. Des.
,
21
(
6
), pp.
561
566
.
21.
Alibeigloo
,
A.
, and
Chen
,
W. Q.
,
2010
, “
Elasticity Solution for an FGM Cylindrical Panel Integrated With Piezoelectric Layers
,”
Eur. J. Mech., A/Solids
,
29
(
4
), pp.
714
723
.
22.
Qian
,
Z.-H.
,
Jin
,
F.
,
Lu
,
T.
,
Kishimoto
,
K.
, and
Hirose
,
S.
,
2010
, “
Effect of Initial Stress on Love Waves in a Piezoelectric Structure Carrying a Functionally Graded Material Layer
,”
Ultrasonics
,
50
(1), pp.
84
90
.
23.
Dai
,
H.-L.
,
Hong
,
L.
,
Fu
,
Y.-M.
, and
Xiao
,
X.
,
2010
, “
Analytical Solution for Electro Magnetothermoelastic Behaviors of a Functionally Graded Piezoelectric Hollow Cylinder
,”
Appl. Math. Modell.
,
34
(4), pp.
343
357
.
24.
Chen
,
W. Q.
,
Bian
,
Z. G.
,
Lv
,
C. F.
, and
Ding
,
H. J.
,
2004
, “
3D Free Vibration Analysis of a Functionally Graded Piezoelectric Hollow Cylinder Filled With Compressible Fluid
,”
Int. J. Solids Struct.
,
41
(
3–4
), pp.
947
964
.
25.
Chen
,
X. L.
,
Zhao
,
Z. Y.
, and
Liew
,
K. M.
,
2008
, “
Stability of Piezoelectric FGM Rectangular Plates Subjected to Non-Uniformly Distributed Load, Heat and Voltage
,”
Adv. Eng. Software
,
39
(
2
), pp.
121
131
.
26.
Dantziger
,
A. J.
,
2001
, “
Multi Component Systems of Ferroelectric Solid Solutions: Physics Crystallochemistry, Technology
,”
Design Aspects of Piezoelectric Materials
, Vol. 1–2,
Rostov State University Press
,
Rostov State University Press
,
Rostov on Don
. (In Russian)
27.
Rybjanets
,
A. N.
,
Razumovskaya
,
O. N.
,
Reznitchenko
,
L. A.
,
Komarov
,
V. D.
, and
Komarov
,
A. V.
,
2004
, “
Lead Titanate and Lead Metaniobate Poro Ferroelectric Ceramics
,”
Integr. Ferroelectr.
,
63
(1), pp.
197
200
.
28.
Rybjanets
,
A. N.
,
Razumovskaya
,
O. N.
,
Reznitchenko
,
L. A.
,
Turik
,
S. A.
,
Alioshin
,
V. A.
, and
Turik
,
A. V.
,
2004
, “
Poro Piezo Ceramics Fabrication Methods, Mathematical Models, Experiment
,”
Izv. Skncvs. Tech. Sci.
, pp.
82
90
.
29.
Li
,
J.-F.
,
Takagi
,
K.
,
Ono
,
M.
,
Pan
,
W.
, and
Watanabe
,
R.
,
2003
, “
Fabrication and Evaluation of Poro Piezoelectric Ceramics and Porosity-Graded Piezoelectric Actuators
,”
J. Am. Ceram. Soc.
,
86
(
7
), pp.
1094
1098
.
30.
Zielinski
,
T. G.
,
2010
, “
Fundamentals of Multi Physics Modeling of Piezo-Poro-Elastic Structures
,”
Arch. Mech.
,
62
(
5
), pp.
343
378
.
31.
Bowen
,
C. R.
,
Perry
,
A.
,
Lewis
,
A. C. F.
, and
Kara
,
H.
,
2004
, “
Processing and Properties of Poro Piezoelectric Materials With High Hydrostatic Figures of Merit
,”
J. Eur. Ceram. Soc.
,
24
(
2
), pp.
541
545
.
32.
Shaw
,
C. P.
,
Whatmore
,
R. W.
, and
Alcock
,
J. R.
,
2007
, “
Poro, Functionally-Gradient Pyroelectric Materials
,”
J. Am. Ceram. Soc.
,
90
(
1
), pp.
137
142
.
33.
Jabbari
,
M.
,
Meshkini
,
M.
, and
Eslami
,
M. R.
,
2011
, “
Mechanical and Thermal Stresses in a FGPM Hollow Cylinder Due to Radially Symmetric Loads
,”
ISRN Mech. Eng.
,
2011
, p.
291409
.
34.
Abdulhakim
,
A.
,
Taya
,
M.
,
Takagi
,
K.
,
Li
,
J.-F.
, and
Watanabe
,
R.
,
2002
, “
Fabrication and Modeling of Poro FGM Piezoelectric Actuators
,”
Proc. SPIE
,
4701
, pp.
467
476
.
35.
Jabbari
,
M.
,
Meshkini
,
M.
, and
Eslami
,
M. R.
,
2012
, “
Non-Axisymmetric Mechanical and Thermal Stresses in a FGPPMs Hollow Cylinder
,”
Int. J. Pressure Vessels Piping
,
134
(
6
), p.
061212
.
You do not currently have access to this content.