Flow-accelerated corrosion (FAC) is a phenomenon which causes wall thinning of pipes, fittings, vessels, and other components in the metal based piping systems that carry water or water-steam mixture in power plants and refineries. Currently used nondestructive techniques, such as radiographic testing (RT), ultrasonic testing (UT), and pulsed eddy current (PEC) testing in order to determine the remaining wall thickness, are time consuming and not economical. Hence, in this work, the use of the fundamental torsional mode ultrasonic guided wave to detect FAC was investigated using the finite element method (FEM) simulations and that were validated with experiments. The torsional wave was generated by the magnetostriction principle using surface mounted strips made of magnetostrictive Hyperco (FeCo) material that provided the source for the surface tractions required to generate the ultrasonic guided wave. The transient electric field was provided through a solenoid coil wound over the strips and permanent magnets were employed to provide the bias magnetic field. From this work, it was observed that the pulse-echo method is not suitable for the FAC detection because of the insignificant reflections from FAC defect region that could not be effectively detected. The through-transmission method was found to be more suitable for the FAC detection because the amplitude of transmitted signal decreased with increase in radial depth of FAC in both the simulation and experiment.

References

References
1.
Petric
,
G. W.
, and
Ksiazek
,
P. E.
,
1997
, “
Flow-Accelerated Corrosion in Industrial Steam and Power Plants
,”
TAPPI Engineering Conference
,
Minneapolis
, pp.
1537
1542
.
2.
Dooley
,
R. B.
,
2008
, “
Flow-Accelerated Corrosion in Fossil and Combined Cycle/HRSG Plants
,”
PowerPlant Chem.
,
10
(
2
), pp.
68
89
.
3.
Dooley
,
R. B.
, and
Chexal
,
V. K.
,
2000
, “
Flow-Accelerated Corrosion of Pressure Vessels in Fossil Plants
,”
Int. J. Press. Vessels Pip.
,
77
(
2–3
), pp.
85
90
.
4.
Chakraborty
,
P. L.
, and
Bhave
,
M. Y.
,
2010
, “
Flow Accelerated Corrosion Failures in Refineries
,” Hydrocarbon Asia, July-Sept., pp.
40
46
.
5.
Yurmanov
,
V.
, and
Rakhmanov
,
A.
,
2009
, “
Flow Accelerated Corrosion of Pipelines and Equipment at Russian NPPs: Problems and Solutions
,” International Atomic Energy Agency Workshop on Erosion-Corrosion Including Flow Accelerated Corrosion and Environmentally Assisted Cracking Issues in Nuclear Power Plants, Moscow, April 21–23.
6.
Ahmed
,
W. H.
,
2009
, “
Effective Flow Accelerated Corrosion Maintenance Program for Reliable Power Generating Stations
,”
Symposium on Maintenance
,
Dhahran
, April.
7.
Ramu
,
A.
,
Jabbar
,
A.
,
Dhanmeher
,
N. K.
,
Mali
,
C. S.
,
Roy
,
N. K.
,
Daniel
,
V. S.
,
Ravindranath, Bhattacharjee
,
S.
, and
Ramamurty
,
U.
,
2010
, “
Role of Weld Root Geometry—Backing Rings in Flow Accelerated Corrosion (FAC): Radiography Testing is an Alternate NDT Method for Detection—An Experience at Tarapur Atomic Power Station-1&2; Nuclear Power Corporation of India Limited, India
,”
European Conference on Non-Destructive Testing
,
Moscow
, Russia.
8.
Mohr
,
W.
, and
Höller
,
P.
,
1976
, “
On Inspection of Thin-Walled Tubes for Transverse and Longitudinal Flaws by Guided Ultrasonic Waves
,”
IEEE Trans. Sonics Ultrason.
,
23
(
5
), pp.
369
374
.
9.
Silk
,
M. G.
, and
Bainton
,
K. F.
,
1979
, “
The Propagation in Metal Tubing of Ultrasonic Wave Modes Equivalent to Lamb Waves
,”
Ultrasonics
,
17
(
1
), pp.
11
19
.
10.
Ditri
,
J. J.
,
1994
, “
Utilization of Guided Waves for the Characterization of Circumferential Cracks in Hollow Cylinders
,”
J. Acoust. Soc. Am.
,
96
(
6
), pp.
3769
3775
.
11.
Lowe
,
M. J. S.
,
Alleyne
,
D. N.
, and
P.
Cawley
,
1998
, “
Defect Detection in Pipes Using Guided Waves
,”
Ultrasonics
,
36
(
1
), pp.
147
154
.
12.
Alleyne
,
D. N.
,
Lowe
,
M. J. S.
, and
Cawley
,
P.
,
1998
, “
The Reflection of Guided Waves From Circumferential Notches in Pipes
,”
ASME J. Appl. Mech.
,
65
(
3
), pp.
635
641
.
13.
Kwun
,
H.
,
Kim
,
S. Y.
, and
Light
,
G. M.
,
2001
, “
Long-Range Guided Wave Inspection of Structures Using the Magnetostrictive Sensor
,”
J. Korean Soc. Nondestr. Test.
,
21
(
4
), pp.
383
390
.
14.
Alleyne
,
D. N.
,
Pavlakovic
,
B.
,
Lowe
,
M. J. S.
, and
Cawley
,
P.
,
2001
, “
Rapid Long Range Inspection of Chemical Plant Pipework Using Guided Waves
,”
Insight: Non-Destr. Test. Condition Monit.
,
43
(
2
), pp.
93
96
.
15.
Bai
,
H.
,
Shah
,
A. H.
,
Popplewell
,
N.
, and
Datta
,
S. K.
,
2001
, “
Scattering of Guided Waves by Circumferential Cracks in Steel Pipes
,”
ASME J. Appl. Mech.
,
68
(
4
), pp.
619
631
.
16.
Zhu
,
W.
,
2002
, “
An FEM Simulation for Guided Elastic Wave Generation and Reflection in Hollow Cylinders With Corrosion Defects
,”
J. Press. Vessel Technol.
,
124
(
1
), pp.
108
117
.
17.
Barshinger
,
J.
,
Rose
,
J. L.
, and
Avioli
,
M. J.
,
2002
, “
Guided Wave Resonance Tuning for Pipe Inspection
,”
ASME J. Pressure Vessel Technol.
,
124
(
3
), pp.
303
310
.
18.
Cawley
,
P.
,
Lowe
,
M. J. S.
,
Simonetti
,
F.
,
Chevalier
,
C.
, and
Roosenbrand
,
A. G.
,
2002
, “
The Variation of the Reflection Coefficient of Extensional Guided Waves in Pipes From Defects as a Function of Defect Depth, Axial Extent, Circumferential Extent and Frequency
,”
J. Mech. Eng. Sci.
,
216
(11), pp.
1131
1143
.
19.
Rose
,
J. L.
,
Sun
,
Z.
,
Mudge
,
P. J.
, and
Avioli
,
M. J.
,
2003
, “
Guided Wave Flexural Mode Tuning and Focusing for Pipe Testing
,”
Mater. Eval.
,
61
(
2
), pp.
162
167
.
20.
Demma
,
A.
,
Cawley
,
P.
,
Lowe
,
M.
, and
Roosenbrand
,
A. G.
,
2003
, “
The Reflection of the Fundamental Torsional Mode From Cracks and Notches in Pipes
,”
J. Acoust. Soc. Am.
,
114
(
2
), pp.
611
625
.
21.
Cheong
,
Y. M.
,
Kim
,
S. S.
,
Lee
,
D. H.
,
Jung
,
H. K.
, and
Kim
,
Y. H.
,
2004
, “
Detection of Axial Cracks in a Bent Pipe Using EMAT Torsional Guided Waves
,”
World Conference on NDT
,
Montreal
, Canada.
22.
Demma
,
A.
,
Cawley
,
P.
,
Lowe
,
M.
,
Roosenbrand
,
A. G.
, and
Pavlakovic
,
B.
,
2004
, “
The Reflection of Guided Waves From Notches in Pipes: A Guide for Interpreting Corrosion Measurements
,”
NDT and E Int.
,
37
(3), pp.
167
180
.
23.
Kim
,
Y. Y.
,
Park
,
C. I.
,
Cho
,
S. H.
, and
Han
,
S. W.
,
2005
, “
Torsional Wave Experiments With a New Magnetostrictive Transducer Configuration
,”
J. Acoust. Soc. Am.
,
117
(
6
), pp.
3459
3468
.
24.
Hayashi
,
T.
, and
Murase
,
M.
,
2005
, “
Defect Imaging With Guided Waves in a Pipe
,”
J. Acoust. Soc. Am.
,
117
(
4
), pp.
2134
2140
.
25.
Liu
,
Z.
,
He
,
C.
,
Wu
,
B.
,
Wang
,
X.
, and
Yang
,
S.
,
2006
, “
Circumferential and Longitudinal Defect Detection Using T(0, 1) Mode Excited by Thickness Shear Mode Piezoelectric Elements
,”
Ultrasonics
,
44
(
suppl 1
), pp.
e1135
e1138
.
26.
Kim
,
J. Y.
,
Lee
,
D. H.
,
Park
,
K. S.
,
Jo
,
Y. D.
,
Choi
,
S. C.
,
Lee
,
C. H.
,
Song
,
S. J.
, and
Cheong
,
Y. M.
,
2006
, “
Long Range Inspection of City Gas Pipeline Using Ultrasonic Guided Waves
,”
Asia-Pacific Conference on NDT
,
Auckland
, New Zealand.
27.
Zhang
,
L.
,
Luo
,
W.
, and
Rose
,
J. L.
,
2006
, “
Ultrasonic Guided Wave Focusing Beyond Welds in a Pipeline
,”
Review of Progress in Quantitative Nondestructive Evaluation
, Vol.
25
,
D. O.
Thompson
and
D. E.
Chimenti
, ed.,
Plenum Publishing Corporation
,
NY
, pp.
877
884
.
28.
Kannan
,
E.
,
Maxfield
,
B. W.
, and
Balasubramaniam
,
K.
,
2007
, “
SHM of Pipes Using Torsional Waves Generated by In Situ Magnetostrictive Tapes
,”
Smart Mater. Struct.
,
16
(
6
), pp.
2505
2515
.
29.
Lee
,
J. H.
, and
Lee
,
S. J.
,
2009
, “
Application of Laser-Generated Guided Wave for Evaluation of Corrosion in Carbon Steel Pipe
,”
NDT and E Int.
,
42
(
3
), pp.
222
227
.
30.
Davies
,
J.
, and
Cawley
,
P.
,
2009
, “
The Application of Synthetic Focusing for Imaging Crack-Like Defects in Pipelines Using Guided Waves
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
56
(
4
), pp.
759
771
.
31.
Ratassepp
,
M.
,
Fletcher
,
S.
, and
Lowe
,
M. J. S.
,
2010
, “
Scattering of the Fundamental Torsional Mode at an Axial Crack in a Pipe
,”
J. Acoust. Soc. Am.
,
127
(
2
), pp.
730
740
.
32.
Carandente
,
R.
,
Ma
,
J.
, and
Cawley
,
P.
,
2010
, “
The Scattering of the Fundamental Torsional Mode From Axi-Symmetric Defects With Varying Depth Profile in Pipes
,”
J. Acoust. Soc. Am.
,
127
(
4
), pp.
3440
3448
.
33.
Wang
,
X.
,
Tse
,
P. W.
,
Mechefske
,
C. K.
, and
Hua
,
M.
,
2010
, “
Experimental Investigation of Reflection in Guided Wave-Based Inspection for the Characterization of Pipeline Defects
,”
NDT and E Int.
,
43
(4), pp.
365
374
.
34.
Zheng
,
M. F.
,
Lu
,
C.
,
Chen
,
G. Z.
, and
Men
,
P.
,
2011
, “
Modeling Three-Dimensional Ultrasonic Guided Wave Propagation and Scattering in Circular Cylindrical Structures Using Finite Element Approach
,”
Phys. Procedia
,
22
, pp.
112
118
.
35.
Ratassepp
,
M.
,
Fletcher
,
S.
, and
Klauson
,
A.
,
2011
, “
Axial Defect Imaging in a Pipe Using Synthetically Focused Guided Waves
,”
Est. J. Eng.
,
17
(
1
), pp.
66
75
.
36.
Kim
,
Y. G.
,
Moon
,
H. S.
,
Park
,
K. J.
, and
Lee
,
J. K.
,
2011
, “
Generating and Detecting Torsional Guided Waves Using Magnetostrictive Sensors of Crossed Coils
,”
NDT and E Int.
,
44
(2), pp.
145
151
.
37.
Løvstad
,
A.
, and
Cawley
,
P.
,
2011
, “
The Reflection of the Fundamental Torsional Guided Wave From Multiple Circular Holes in Pipes
,”
NDT and E Int.
,
44
(2), pp.
553
562
.
38.
Carandente
,
R.
, and
Cawley
,
P.
,
2012
, “
The Effect of Complex Defect Profiles on the Reflection of the Fundamental Torsional Mode in Pipes
,”
NDT and E Int.
,
46
, pp.
41
47
.
39.
Løvstad
,
A.
, and
Cawley
,
P.
,
2012
, “
The Reflection of the Fundamental Torsional Mode From Pit Clusters in Pipes
,”
NDT and E Int.
,
46
, pp.
83
93
.
40.
Cawley
,
P.
,
2002
, “
Practical Long Range Guided Wave Inspection—Managing Complexity
,”
Review of Progress in Quantitative Nondestructive Evaluation
, Vol.
22
,
D. O.
Thompson
and
D. E.
Chimenti
, ed.,
Plenum Publishing Corporation
,
NY
, pp.
22
40
.
41.
Drozdz
,
M. B.
,
2007
, “
Efficient Finite Element Modeling of Ultrasound Waves in Elastic Media
,” Ph.D. thesis, Imperial College, University of London, London.
42.
Alleyne
,
D. N.
, and
Cawley
,
P.
,
1992
, “
The Interaction of Lamb Waves With Defects
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
39
(
3
), pp.
381
397
.
43.
Lowe
,
M. J. S.
, and
Diligent
,
O.
,
2002
, “
Low-Frequency Reflection Characteristics of the s0 Lamb Wave From a Rectangular Notch in a Plate
,”
J. Acoust. Soc. Am.
,
111
(
1
), pp.
64
74
.
44.
Kwun
,
H.
, and
Bartels
,
K. A.
,
1998
, “
Magnetostrictive Sensor Technology and its Applications
,”
Ultrasonics
,
36
(
1
), pp.
171
178
.
45.
Demma
,
A.
,
Cawley
,
P.
,
Lowe
,
M.
, and
Pavlakovic
,
B.
,
2005
, “
The Effect of Bends on the Propagation of Guided Waves in Pipes
,”
ASME J. Pressure Vessel Technol.
,
127
(
3
), pp.
328
335
.
46.
Verma
,
B.
,
Mishra
,
T. K.
,
Balasubramaniam
,
K.
, and
Rajagopal
,
P.
,
2014
, “
Interaction of Low-Frequency Axisymmetric Ultrasonic Guided Waves With Bends in Pipes of Arbitrary Bend Angle and General Bend Radius
,”
Ultrasonics
,
54
(
3
), pp.
801
808
.
47.
Pattanayak
,
R.
,
Manogharan
,
P.
,
Balasubramaniam
,
K.
, and
Rajagopal
,
P.
,
2015
, “
Low Frequency Axisymmetric Longitudinal Guided Waves in Eccentric Annular Cylinders
,”
J. Acoust. Soc. Am.
,
137
(
6
), pp.
3253
3262
.
You do not currently have access to this content.