The conventional joining method of a pipe and a flange uses welding. However, welded pipe–flange joints have the drawback with the inherent distortions and residual stresses resulting from the welding process, which can affect the mechanical integrity and performance of the flange significantly. In this study, a novel pipe–flange connection method based on cold work is evaluated using the finite element method. A weld neck flange is modified by manufacturing circumferential grooves at its internal surface and the pipe is cold worked into the grooves using a hydraulic expansion tool. The finite element model incorporates a pressure dependent friction model for the contact interaction between the tool–pipe–flange and a strain-based ductile failure locus for the pipe material accounting for ductile damage initiation during the cold work process utilizing a continuum damage mechanics approach. The finite element results show that a high load carrying capacity can be achieved for the cold work pipe–flange connection and has good potential for replacing the conventional welded joint.

References

References
1.
ASME, Process Piping Code, ASME-B31.3.
2.
ASME, Pipe Flanges and Flanged Fittings, ASME-B16.5.
3.
Nash
,
D. H.
, and
Abid
,
M.
,
2004
, “
Surface Sensitivity Study of Non-Gasketed Flange Joint
,”
Proc. Inst. Mech. Eng., Part E
,
218
(
4
), pp.
205
212
.10.1243/0954408042467007
4.
Abid
,
M.
, and
Nash
,
D. H.
,
2002
, “
Risk Assessment Studies of Gasketed and Non-Gasketed Bolted Pipe Joints
,”
ASME
Paper No. IPC2002-27386.10.1115/IPC2002-27386
5.
Homilius
,
C.
,
2012
, “
The Benefits of Cold-Work in Middle Eastern Brownfield Projects and High Pressure Subsea Piping Operations
,”
Society of Petroleum Engineers—Abu Dhabi International Petroleum Exhibition and Conference 2012
,
ADIPEC
2012—Sustainable Energy Growth: People, Responsibility, and Innovation, pp.
2116
2122
.10.2118/161619-MS
6.
Quickflange
, “
Quickflange Technology & Products
,” www.quickflange.com
7.
Henriksen
,
J.
, and
Hansen
,
M. R.
,
2013
, “
FEM Simulation of Cold Deforming Pipe Into Flange
,”
26th Nordic Seminar on Computational Mechanics
, pp.
93
96
.
8.
Mori
,
K. I.
,
Bay
,
N.
,
Fratini
,
L.
,
Micari
,
F.
, and
Tekkaya
,
A. E.
,
2013
, “
Joining by Plastic Deformation
,”
CIRP Ann. Manuf. Technol.
,
62
(
2
), pp.
673
694
.10.1016/j.cirp.2013.05.004
9.
Mori
,
K. I.
,
2014
, “
Joining Processes by Plastic Deformation
,”
Adv. Mater. Res
,
966–967
, pp.
29
47
.10.4028/www.scientific.net/AMR.966-967.29
10.
Park
,
Y. B.
,
Kim
,
H. Y.
, and
Oh
,
S. I.
,
2005
, “
Design of Axial/Torque Joint Made by Electromagnetic Forming
,”
Thin-Walled Struct.
,
43
(
5
), pp.
826
844
.10.1016/j.tws.2004.10.009
11.
Wang
,
H.
,
Sang
,
Z.
, and
Widera
,
G. E. O.
,
2007
, “
Connection Strength and Tightness of Hydraulically Expanded Tube-to-Tubesheet Joints
,”
J. Mater. Process. Technol.
194
(
1–3
), pp.
93
99
.10.1016/j.jmatprotec.2007.04.004
12.
Wang
,
H. F.
, and
Sang
,
Z. F.
,
2005
, “
Effect of Geometry of Grooves on Connection Strength of Hydraulically Expanded Tube-to-Tubesheet Joints
,”
ASME J. Pressure Vessel Technol.
,
127
(
4
), pp.
430
435
.10.1115/1.2061007
13.
Weddeling
,
C.
,
Woodward
,
S. T.
,
Marré
,
M.
,
Nellesen
,
J.
,
Psyk
,
V.
,
Tekkaya
,
A. E.
, and
Tillmann
,
W.
,
2011
, “
Influence of Groove Characteristics on Strength of Form-Fit Joints
,”
J. Mater. Process. Technol.
,
211
(
5
), pp.
925
935
.10.1016/j.jmatprotec.2010.08.004
14.
ASME
,
2010
,
Material Properties (Metric), ASME-BPVC, Section II-Part D
,
ASME
, New York.
15.
Wattrisse
,
B.
,
Chrysochoos
,
A.
,
Muracciole
,
J. M.
, and
Némoz-Gaillard
,
M.
,
2001
, “
Analysis of Strain Localization During Tensile Tests by Digital Image Correlation
,”
Exp. Mech.
,
41
(
1
), pp.
29
39
.10.1007/BF02323101
16.
Bridgman
,
P.
,
1964
,
Studies in Large Plastic Flow and Fracture
,
Harvard University Press
,
Cambridge, MA
.10.4159/harvard.9780674731349
17.
Barsoum
,
I.
, and
Faleskog
,
J.
,
2011
, “
Micromechanical Analysis on the Influence of the Lode Parameter on Void Growth and Coalescence
,”
Int. J. Solids Struct.
,
48
(
6
), pp.
925
938
.10.1016/j.ijsolstr.2010.11.028
18.
Barsoum
,
I.
,
Faleskog
,
J.
, and
Pingle
,
S.
,
2012
, “
The Effect of Stress State on Ductility in the Moderate Stress Triaxiality Regime of Medium and High Strength Steels
,”
Int. J. Mech. Sci.
,
65
(
1
), pp.
203
212
.10.1016/j.ijmecsci.2012.10.003
19.
Barsoum
,
I.
,
Khan
,
F.
,
Molki
,
A.
, and
Seibi
,
A.
,
2014
, “
Modeling of Ductile Crack Propagation in Expanded Thin-Walled 6063-T5 Aluminum Tubes
,”
Int. J. Mech. Sci.
,
80
, pp.
160
168
.10.1016/j.ijmecsci.2014.01.012
20.
Kim
,
J. W.
,
Park
,
C. Y.
, and
Lee
,
S. H.
,
2009
, “
Local Failure Criteria for Wall-Thinning Defect in Piping Components Based on Simulated Specimen and Real-Scale Pipe Tests
,”
20th International Conference on Structural Mechanics in Reactor Technology (SMIRT 20)
, Espoo, Finland, Paper 1703, pages 1–14.
21.
Kim
,
J. W.
,
Lee
,
S. H.
, and
Park
,
C. Y.
,
2009
, “
Validation of a Local Failure Criteria Using the Results of Wall-Thinned Pipe Failure Tests
,”
Trans. Korean Soc. Mech. Eng. A
,
33
(
12
), pp.
1393
1400
.10.3795/KSME-A.2009.33.12.1393
22.
McClintock
,
F. A.
,
1968
, “
A Criterion for Ductile Fracture by the Growth of Holes
,”
ASME J. Appl. Mech.
,
35
(
2
), pp.
363
371
.10.1115/1.3601204
23.
Rice
,
J. R.
, and
Tracey
,
D. M.
,
1969
, “
On the Ductile Enlargement of Voids in Triaxial Stress Fields
,”
J. Mech. Phys. Solids
,
17
(
3
), pp.
201
217
.10.1016/0022-5096(69)90033-7
24.
Orowan
,
E.
,
1943
, “
The Calculation of Roll Pressure in Hot and Cold Flat Rolling
,”
Proc. Inst. Mech. Eng.
,
150
(
1
), pp.
140
167
.10.1243/PIME_PROC_1943_150_025_02
25.
Shaw
,
M. C.
,
Ber
,
A.
, and
Mamin
,
P. A.
,
1960
, “
Friction Characteristics of Sliding Surfaces Undergoing Subsurface Plastic Flow
,”
ASME J. Fluids Eng.
,
82
(), pp.
342
346
.10.1115/1.3662595
26.
Tabor
,
D.
,
1959
, “
Junction Growth in Metallic Friction: The Role of Combined Stresses and Surface Contamination
,”
Proc. R. Soc. London, Ser. A
,
251
, pp.
378
393
.10.1098/rspa.1959.0114
27.
Leu
,
D. K.
,
2009
, “
A Simple Dry Friction Model for Metal Forming Process
,”
J. Mater. Process. Technol.
,
209
(
5
), pp.
2361
2368
.10.1016/j.jmatprotec.2008.05.027
28.
Hassan
,
M. A.
,
El-Sebaie
,
M. G.
, and
Yamaguchi
,
K.
,
2001
, “
An Improved Punch Friction Test in Sheet Metal Forming
,”
J. Jpn. Soc. Technol. Plast.
,
42
(
480
), pp.
31
37
.
29.
6.13 Av, 2013, Dassault Systèmes Simulia.
30.
Bao
,
Y.
, and
Wierzbicki
,
T.
,
2004
, “
On the Fracture Locus in the Equivalent Strain and Stress Triaxiality Space
,”
Int. J. Mech. Sci.
,
46
(
1
), pp.
81
98
.10.1016/j.ijmecsci.2004.02.006
31.
Wierzbicki
,
T.
,
Bao
,
Y.
,
Lee
,
Y. W.
, and
Bai
,
Y.
,
2005
, “
Calibration and Evaluation of Seven Fracture Models
,”
Int. J. Mech. Sci.
,
47
(
4–5
), pp.
719
743
.10.1016/j.ijmecsci.2005.03.003
32.
Hooputra
,
H.
,
Gese
,
H.
,
Dell
,
H.
, and
Werner
,
H.
,
2004
, “
A Comprehensive Failure Model for Crashworthiness Simulation of Aluminium Extrusions
,”
Int. J. Crashworthiness
,
9
(
5
), pp.
449
463
.10.1533/ijcr.2004.0289
33.
Giglio
,
M.
,
Manes
,
A.
, and
Viganò
,
F.
,
2012
, “
Ductile Fracture Locus of Ti6Al4V Titanium Alloy
,”
Int. J. Mech. Sci.
,
54
(
1
), pp.
121
135
.10.1016/j.ijmecsci.2011.10.003
You do not currently have access to this content.