Prediction of temperature distribution, microstructure, and residual stresses generated during the welding process is crucial for the design and assessment of welded structures. In the multipass welding process of parts with different thicknesses, temperature distribution, microstructure, and residual stresses vary during each weld pass and from one part to another. This complicates the welding process and its analysis. In this paper, the evolution of temperature distribution and the microstructure generated during the multipass welding of AISI 321 stainless steel plates were studied numerically and experimentally. Experimental work involved designing and manufacturing benchmark specimens, performing the welding, measuring the transient temperature history, and finally observing and evaluating the microstructure. Benchmark specimens were made of corrosion-resistant AISI 321 stainless steel plates with different thicknesses of 6 mm and 10 mm. The welding process consisted of three welding passes of two shielded metal arc welding (SMAW) process and one gas tungsten arc welding (GTAW) process. Finite element (FE) models were developed using the DFLUX subroutine to model the moving heat source and two different approaches for thermal boundary conditions were evaluated using FILM subroutines. The DFLUX and FILM subroutines are presented for educational purposes, as well as a procedure for their verification.

References

References
1.
Gannon
,
L.
,
Liu
,
Y.
,
Pegg
,
N.
, and
Smith
,
M. J.
,
2012
, “
Effect of Welding-Induced Residual Stress and Distortion on Ship Hull Girder Ultimate Strength
,”
Mar. Struct.
,
28
(
1
), pp.
25
49
.10.1016/j.marstruc.2012.03.004
2.
Keppas
,
L. K.
,
Wimpory
,
R. C.
,
Katsareas
,
D. E.
, and
Ohms
,
C.
,
2010
, “
Combination of Simulation and Experiment in Designing Repair Weld Strategies: A Feasibility Study
,”
Nucl. Eng. Des.
,
240
(
10
), pp.
2897
2906
.10.1016/j.nucengdes.2010.05.034
3.
Ghahremani
,
K.
, and
Walbridge
,
S.
,
2011
, “
Fatigue Testing and Analysis of Peened Highway Bridge Welds Under In-Service Variable Amplitude Loading Conditions
,”
Int. J. Fatigue
,
33
(
3
), pp.
300
312
.10.1016/j.ijfatigue.2010.09.004
4.
Turski
,
M.
,
Francis
,
J. A.
,
Hurrell
,
P. R.
,
Bate
,
S. K.
,
Hiller
,
S.
, and
Withers
,
P. J.
,
2012
, “
Effects of Stop–Start Features on Residual Stresses in a Multipass Austenitic Stainless Steel Weld
,”
Int. J. Pressure Vessels Piping
,
89
, pp.
9
18
.10.1016/j.ijpvp.2011.08.006
5.
Withers
,
P. J.
, and
Bhadeshia
,
H. K. D. H.
,
2001
, “
Residual Stress—Part 2: Nature and Origins
,”
Mater. Sci. Technol.
,
17
(
4
), pp.
366
375
.10.1179/026708301101510087
6.
Murugan
,
S.
,
Rai
,
S. K.
,
Kumar
,
P. V.
,
Jayakumar
,
T.
,
Raj
,
B.
, and
Bose
,
M. S. C.
,
2001
, “
Temperature Distribution and Residual Stresses Due to Multipass Welding in Type 304 Stainless Steel and Low Carbon Steel Weld Pads
,”
Int. J. Pressure Vessels Piping
,
78
(
4
), pp.
307
317
.10.1016/S0308-0161(01)00047-3
7.
Heinze
,
C.
,
Schwenk
,
C.
, and
Rethmeier
,
M.
,
2012
, “
Numerical Calculation of Residual Stress Development of Multi-Pass Gas Metal Arc Welding
,”
J. Constr. Steel Res.
,
72
, pp.
12
19
.10.1016/j.jcsr.2011.08.011
8.
Smith
,
M. C.
,
Bouchard
,
P. J.
,
Turski
,
M.
,
Edwards
,
L.
, and
Dennis
,
R. J.
,
2012
, “
Accurate Prediction of Residual Stress in Stainless Steel Welds
,”
Comput. Mater. Sci.
,
54
, pp.
312
328
.10.1016/j.commatsci.2011.10.024
9.
Murugan
,
S.
,
Kumar
,
P. V.
,
Raj
,
B.
, and
Bose
,
M. S. C.
,
1998
, “
Temperature Distribution During Multipass Welding of Plates
,”
Int. J. Pressure Vessels Piping
,
75
(
12
), pp.
891
905
.10.1016/S0308-0161(98)00094-5
10.
Ainsworth
,
R. A.
,
2006
, “
R5 Procedures for Assessing Structural Integrity of Components Under Creep and Creep Fatigue Conditions
,”
Int. Mater. Rev.
,
51
(
2
), pp.
107
126
.10.1179/174328006X79463
11.
Tseng
,
K. H.
, and
Chou
,
C. P.
,
2003
, “
The Study of Nitrogen in Argon Gas on the Angular Distortion of Austenitic Stainless Steel Weldments
,”
J. Mater. Process. Technol.
,
142
(
1
), pp.
139
144
.10.1016/S0924-0136(03)00593-4
12.
Attarha
,
M. J.
, and
Sattari-Far
,
I.
,
2011
, “
Study on Welding Temperature Distribution in Thin Welded Plates Through Experimental Measurements and Finite Element Simulation
,”
J. Mater. Process. Technol.
,
211
(
4
), pp.
688
694
.10.1016/j.jmatprotec.2010.12.003
13.
Duranton
,
P.
,
Devaux
,
J.
,
Robin
,
V.
,
Gilles
,
P.
, and
Bergheau
,
J. M.
,
2004
, “
3D Modelling of Multipass Welding of a 316l Stainless Steel Pipe
,”
J. Mater. Process. Technol.
,
153–154
, pp.
457
463
.10.1016/j.jmatprotec.2004.04.128
14.
Lewis
,
S. J.
,
Alizadeh
,
H.
,
Gill
,
C.
,
Vega
,
A.
,
Murakawa
,
H.
,
El-Ahmar
,
W.
,
Gilles
,
P.
,
Smith
,
D. J.
, and
Truman
,
C. E.
,
2009
, “
Modelling and Measurement of Residual Stresses in Autogenously Welded Stainless Steel Plates: Part 1—Fabrication and Modelling
,”
Int. J. Pressure Vessels Piping
,
86
(
12
), pp.
798
806
.10.1016/j.ijpvp.2009.12.003
15.
Kim
,
S.-H.
,
Kim
,
J.-B.
, and
Lee
,
W.-J.
,
2009
, “
Numerical Prediction and Neutron Diffraction Measurement of the Residual Stresses for a Modified 9Cr–1Mo Steel Weld
,”
J. Mater. Process. Technol.
,
209
(
8
), pp.
3905
3913
.10.1016/j.jmatprotec.2008.09.012
16.
Murugan
,
N.
, and
Narayanan
,
R.
,
2009
, “
Finite Element Simulation of Residual Stresses and Their Measurement by Contour Method
,”
Mater. Des.
,
30
(
6
), pp.
2067
2071
.10.1016/j.matdes.2008.08.041
17.
Brickstad
,
B.
, and
Josefson
,
B. L.
,
1998
, “
A Parametric Study of Residual Stresses in Multi-Pass Butt-Welded Stainless Steel Pipes
,”
Int. J. Pressure Vessels Piping
,
75
(
1
), pp.
11
25
.10.1016/S0308-0161(97)00117-8
18.
Shan
,
X. Y.
,
Tan
,
M. J.
, and
O'dowd
,
N. P.
,
2007
, “
Developing a Realistic FE Analysis Method for the Welding of a Net Single-Bead-On-Plate Test Specimen
,”
J. Mater. Process. Technol.
,
192–193
, pp.
497
503
.10.1016/j.jmatprotec.2007.04.080
19.
Nakhodchi
,
S.
,
Shokuhfar
,
A.
, and
Akbari Iraj
,
S.
, “
Measurement and Prediction of Residual Stresses in Multi-Pass Welded Aisi 321 Stainless Steel Plates With Different Thicknesses
,” (to be submitted).
20.
Radaj
,
D.
,
2003
,
Welding Residual Stresses and Distortion: Calculation and Measurement
,
DVS Verlag
,
Woodhead Publishing, Cambridge
.
21.
Sun
,
W.
,
Williams
,
E. J.
,
Bennett
,
C. J.
,
Becker
,
A. A.
,
Tanner
,
D. W. J.
,
Yaghi
,
A. H.
, and
Hyde
,
T. H.
,
2009
, “
Current Capabilities of the Thermo-Mechanical Modelling of Welding Processes
,”
J. Multiscale Modell.
,
01
(
03n04
), pp.
451
478
.10.1142/S1756973709000207
22.
Fanous
,
I. F. Z.
,
Wifi
,
A. S.
, and
Younan
,
M. Y. A.
,
2003
, “
3D Finite Element Modeling of the Welding Process Using Element Birth and Element Movement Techniques
,”
ASME J. Pressure Vessel Technol.
,
125
(
2
), pp.
144
150
.10.1115/1.1564070
23.
Wahab
,
M. A.
,
Painter
,
M. J.
, and
Davies
,
M. H.
,
1998
, “
The Prediction of the Temperature Distribution and Weld Pool Geometry in the Gas Metal Arc Welding Process
,”
J. Mater. Process. Technol.
,
77
(
1–3
), pp.
233
239
.10.1016/S0924-0136(97)00422-6
24.
Singh
,
R.
,
2011
,
Applied Welding Engineering: Processes, Codes, and Standards
,
Butterworth-Heinemann
,
Oxford
.
25.
Yaghi
,
A.
,
Hyde
,
T. H.
,
Becker
,
A. A.
,
Sun
,
W.
, and
Williams
,
J. A.
,
2006
, “
Residual Stress Simulation in Thin and Thick-Walled Stainless Steel Pipe Welds Including Pipe Diameter Effects
,”
Int. J. Pressure Vessels Piping
,
83
(
11–12
), pp.
864
874
.10.1016/j.ijpvp.2006.08.014
You do not currently have access to this content.