An analytical study of the piezothermoelastic behavior of a functionally graded material (FGM) hollow sphere with integrated piezoelectric layers as a sensor and actuator under the effect of radially symmetric thermo-electro-mechanical loading is carried out. The material properties of the FGM layer are assumed to be graded in the radial direction according to a power law function. Governing differential equations are developed in terms of the components of the displacement field, the electric potential and the temperature of each layer of the smart FGM hollow sphere. The resulting differential equations are solved analytically. Numerical examples are given and discussed to show the significant influence of grading index of material properties and feedback gain on the mechanical–electrical responses. This will be useful for modern engineering design.

References

1.
Qin
,
Q.-H.
,
2001
,
Fracture Mechanics of Piezoelectric Materials
,
WIT
,
Southampton, UK
.
2.
Lutz
,
M. P.
, and
Zimmerman
,
R. W.
,
1996
, “
Thermal Stresses and Effective Thermal Expansion Coefficient of a Functionally Graded Sphere
,”
J. Therm. Stress
,
19
(
1
), pp.
39
54
.10.1080/01495739608946159
3.
Zimmerman
,
R. W.
, and
Lutz
,
M. P.
,
1999
, “
Thermal Stress and Thermal Expansion in a Uniformly Heated Functionally Graded Cylinder
,”
J. Therm. Stress
,
22
(
2
), pp.
177
188
.10.1080/014957399280959
4.
Obata
,
Y.
, and
Noda
,
N.
,
1994
, “
Steady Thermal Stresses in a Hollow Circular Cylinder and a Hollow Sphere of a Functionally Gradient Material
,”
J. Therm. Stresses
,
17
(
3
), pp.
471
487
.10.1080/01495739408946273
5.
Jabbari
,
M.
,
Sohrabpour
,
S.
, and
Eslami
,
M. R.
,
2002
, “
Mechanical and Thermal Stresses in a Functionally Graded Hollow Cylinder Due to Radially Symmetric Loads
,”
Int. J. Pressure Vessels Piping
,
79
(
7
), pp.
493
497
.10.1016/S0308-0161(02)00043-1
6.
Poultangari
,
R.
,
Jabbari
,
M.
, and
Eslami
,
M. R.
,
2008
, “
Functionally Graded Hollow Spheres Under Non-Axisymmetric Thermo-Mechanical Loads
,”
Int. J. Pressure Vessels Piping
,
85
(
5
), pp.
295
305
.10.1016/j.ijpvp.2008.01.002
7.
Shao
,
Z. S.
, and
Wang
,
T. J.
,
2006
, “
Three-Dimensional Solutions for the Stress fields in Functionally Graded Cylindrical Panel With Finite Length and Subjected to Thermal/Mechanical Loads
,”
Int. J. Solids Struct.
,
43
(
13
), pp.
3856
3874
.10.1016/j.ijsolstr.2005.04.043
8.
Takeuti
,
Y.
, and
Tanigawa
,
Y.
,
1982
, “
Transient Thermal Stresses of a Hollow Sphere Due to Rotating Heat Source
,”
J. Therm. Stresses
,
5
(
3–4
), pp.
283
298
.10.1080/01495738208942151
9.
Tiersten
,
H. F.
,
1969
,
Linear Piezoelectric Plate Vibrations
,
Plenum Press
,
New York
.
10.
Berlincourt
,
D. A.
,
1971
, “
Piezoelectric Crystals and Ceramics
,”
Ultrasonic Transducer Materials
,
O. E.
Mattiat
, ed.,
Plenum
,
New York
, pp.
63
124
.
11.
Berlincourt
,
D. A.
,
Curran
,
D. R.
, and
Jaffe
,
H.
,
1964
, “
Piezoelectric and Piezomagnetic Materials and Their Function in Transducers
,”
Physical Acoustics: Principles and Methods
,
W. P.
Mason
, ed.,
Academic
,
New York
, pp.
169
270
.
12.
Adelman
,
N. T.
,
Stavsky
,
Y.
, and
Segal
,
E.
,
1975
, “
Axisymmetric Vibrations of Radially Polarized Piezoelectric Ceramic Cylinders
,”
J. Sound Vib.
,
38
(
2
), pp.
245
254
.10.1016/S0022-460X(75)80008-3
13.
Ootao
,
Y.
, and
Tanigawa
,
Y.
,
2001
, “
Control of Transient Thermoelastic Displacement of a Two-Layered Composite Plate Constructed of Isotropic Elastic and Piezoelectric Layers Due to Nonuniform Heating
,”
Arch. Appl. Mech.
,
71
(
4–5
), pp.
207
220
.10.1007/s004190000136
14.
Ashida
,
F.
, and
Tauchert
,
T. R.
,
2001
, “
A General Plane-Stress Solution in Cylindrical Coordinates for a Piezothermoelastic Plate
,”
Int. J. Solids Struct.
,
38
(
28–29
), pp.
4969
4985
.10.1016/S0020-7683(00)00321-8
15.
Qin
,
Q. H.
, and
Mai
,
Y. W.
,
1998
, “
Thermoelectroelastic Green's function and Its application for Bimaterial of Piezoelectric Materials
,”
Arch. Appl. Mech.
,
68
(
6
), pp.
433
444
.10.1007/s004190050177
16.
Shul'ga
,
N. A.
,
1990
, “
Radial Electro-Elastic Vibrations of a Hollow Piezoceramic Sphere
,”
Sov. Appl. Mech.
,
26
(
8
), pp.
731
734
.10.1007/BF00891787
17.
Ding
,
H. J.
,
Wang
,
H. M.
, and
Chen
,
W. Q.
,
2003
, “
Analytical Solution for a Non-Homogeneous Isotropic Piezoelectric Hollow Sphere
,”
Arch. Appl. Mech.
,
73
(
1–2
), pp.
49
62
.10.1007/s00419-002-0244-7
18.
Chen
,
W. Q.
, and
Shioya
,
T.
,
2001
, “
Piezothermoelastic Behavior of a Pyroelectric Spherical Shell
,”
J. Therm. Stress
,
24
(
2
), pp.
105
120
.10.1080/01495730150500424
19.
Chen
,
W. Q.
,
Lu
,
Y.
,
Ye
,
G. R.
, and
Cai
,
J. B.
,
2002
, “
3D Electroelastic fields in a Functionally Graded Piezoceramic Hollow Sphere Under Mechanical and Electric Loadings
,”
Arch. Appl. Mech.
,
72
(
1
), pp.
39
51
.10.1007/s004190100184
20.
Dai
,
H. L.
, and
Wang
,
X.
,
2005
, “
Thermo-Electro-Elastic Transient Responses in Piezoelectric Hollow Structures
,”
Int. J. Solids Struct.
,
42
(
3–4
), pp.
1151
1171
.10.1016/j.ijsolstr.2004.06.061
21.
Ootao
,
Y.
, and
Tanigawa
,
Y.
,
2007
, “
Transient Piezothermoelastic Analysis for a Functionally Graded Thermopiezo-Electric Hollow Sphere
,”
Compos. Struct.
,
81
(
4
), pp.
540
549
.10.1016/j.compstruct.2006.10.002
22.
Wang
,
H. M.
,
Ding
,
H. J.
, and
Chen
,
Y. M.
,
2005
, “
Transient Responses of a Multilayered Spherically Isotropic Piezoelectric Hollow Sphere
,”
Arch. Appl. Mech.
,
74
(
9
), pp.
581
599
.10.1007/s00419-005-0374-9
23.
Wang
,
H. M.
, and
Xu
,
Z. X.
,
2010
, “
Effect of Material Inhomogeneity on Electromechanical Behaviors of Functionally Graded Piezoelectric Spherical Structures
,”
Comput. Mater. Sci.
,
48
(
2
), pp.
440
445
.10.1016/j.commatsci.2010.02.004
24.
Sabzikar Boroujerdy
,
M.
, and
Eslami
,
M. R.
,
2013
, “
Nonlinear Axisymmetric Thermomechanical Response of Piezo-FGM Shallow Spherical Shells
,”
Arch. Appl. Mech.
,
83
(
12
), pp.
1681
1693
.10.1007/s00419-013-0769-y
You do not currently have access to this content.