A simple yet practical model to estimate the time dependence of metal loss (ML) in underground pipelines has been developed considering the in situ soil parameters. These parameters are soil resistivity, pH, moisture content, chloride content, and salinity. The time dependence of the ML was modeled as Pmax = ktn, where t is the time exposure, k is ML constant, and n is the corrosion growth pattern. The results of ML and in situ parameters were analyzed using statistical methods such as data screening, linear correlation analysis, principal component analysis, and multiple linear regressions. The best model revealed that k is principally influenced by ressistivity, and n appears to be correlated with chloride content. Model optimization was carried out by introducing several observation criteria, namely, water access, soil color, and soil texture. The addition of these factors has improved the initial accuracy of model to an R2 score of 0.960. As a conclusion, the developed model can provide immediate assessment of corrosion growth experienced by underground structures.

References

References
1.
Mitsuya
,
M.
, and
Motohashi
,
H.
,
2013
, “
Cyclic Deformation Behavior and Buckling of Pipeline With Local Metal Loss in Response to Axial Seismic Loading
,”
ASME J. Pressure Vessel Technol.
,
135
(
6
), p.
061801
.10.1115/1.4024451
2.
Noor
,
N. M.
,
Yahaya
,
N.
,
Lim
,
K. S.
,
Othman
,
S. R.
,
Rashid
,
A. S. A.
, and
Hanafiah
,
N. M.
,
2012
, “
Relationship Between Soil Properties and Corrosion of Carbon Steel
,”
J. Appl. Sci. Res.
,
8
(
3
), pp.
1739
1747
.
3.
Zhang
,
X.
, and
Zhou
,
W.
,
2014
, “
An Efficient Methodology for the Reliability Analysis of Corroding Pipelines
,”
ASME J. Pressure Vessel Technol.
,
136
(
4
), p.
041701
.10.1115/1.4026797
4.
Noor
,
N. M.
,
Ozman
,
N. A. N.
, and
Yahaya
,
N.
,
2011
, “
Deterministic Prediction of Corroding Pipeline Remaining Strength in Marine Environment Using DNV RP-F101 (Part A)
,”
J. Sustainability Sci. Manage.
,
6
(
1
), pp.
69
78
.10.1007/s11625-010-0117-x
5.
Zhang
,
X.
,
Zhou
,
W.
,
Al-Amin
,
M.
,
Kariyawasam
,
S.
, and
Wang
,
H.
,
2014
, “
Time-Dependent Corrosion Growth Modeling Using Multiple In-Line Inspection Data
,”
ASME J. Pressure Vessel Technol.
,
136
(
4
), p.
041202
.10.1115/1.4026798
6.
Ferreira
,
C. A. M.
,
Ponciano
,
J. A. C.
,
Vaitsman
,
D. S.
, and
Perez
,
D. V.
,
2007
, “
Evaluation of the Corrosivity of the Soil Through Its Chemical Composition
,”
Sci. Total Environ.
,
388
(
1–3
), pp.
250
255
.10.1016/j.scitotenv.2007.07.062
7.
Romanoff
,
M.
,
1957
,
Underground Corrosion
,
Circular 579 National Bureau of Standards
,
Washington, DC
.
8.
Rossum
,
J. R.
,
1969
, “
Prediction of Pitting Rates in Ferrous Metals From Soil Parameters
,”
J. Am. Water Works Assoc.
,
61
(
6
), pp.
305
310
.
9.
Mughabghab
,
S. F.
, and
Sullivan
,
T. M.
,
1989
, “
Evaluation of the Pitting Corrosion of Carbon Steels and Other Ferrous Metals in Soil Systems
,”
Waste Manage.
,
9
(
4
), pp.
239
251
.10.1016/0956-053X(89)90408-X
10.
Katano
,
Y.
,
Miyata
,
K.
,
Shimizu
,
H.
, and
Isogai
,
T.
,
2003
, “
Predictive Model for Pit Growth on Underground Pipes
,”
Corrosion
,
59
(
2
), pp.
155
161
.10.5006/1.3277545
11.
Li
,
S. Y.
,
Kim
,
Y. G.
,
Kho
,
Y. T.
, and
Kang
,
T.
,
2003
, “
Corrosion Behavior of Carbon Steel Influenced by Sulfate-Reducing Bacteria in Soil Environments
,”
Proceedings of the 2003 Corrosion Conference
,
San Diego, CA
, Mar. 16–20, National Association of Corrosion Engineers, Paper No. 03549.
12.
Velázquez
,
J. C.
,
Caleyo
,
F.
,
Valor
,
A.
, and
Hallen
,
J. M.
,
2009
, “
Predictive Model for Pitting Corrosion in Buried Oil and Gas Pipelines
,”
Corrosion
,
65
(
5
), pp.
332
342
.10.5006/1.3319138
13.
ASTM
,
2000
, G51-95,
Standard Test Method for Measuring pH of Soil for Use in Corrosion Testing
,
American Society for Testing and Materials
,
West Conshohocken, PA
.
14.
ASTM
,
2000
, D2216,
Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rocks by Mass
,
American Society for Testing and Materials
,
West Conshohocken, PA
.
15.
ASTM
,
2004
, G1-03,
Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens
,
American Society for Testing and Materials
,
West Conshohocken, PA
.
16.
O'Donoghue
,
P.
,
2010
,
Research Methods for Sports Performance Analysis
,
Routledge
,
New York
.
17.
ASTM
,
2010
, G16-95,
Standard Guide for Applying Statistics to Analysis of Corrosion Data
,
American Society for Testing and Materials
,
West Conshohocken, PA
.
18.
ASTM
,
2010
, E178-08,
Standard Practice for Dealing With Outlying Observations
,
American Society for Testing and Materials
,
West Conshohocken, PA
.
19.
Wright
,
D. B.
, and
London
,
K.
,
2009
,
Modern Regression Techniques Using R: A Practical Guide
,
SAGE Publishing
,
Thousands Oak, CA
.
20.
Baboian
,
R.
,
2005
,
Corrosion Tests and Standards: Application and Interpretation
,
2nd ed.
,
ASTM International
,
West Conshohocken, PA
.
21.
Ismail
,
A. I. M.
, and
El-Shamy
,
A. M.
,
2009
, “
Engineering Behaviours of Soil Materials on the Corrosion of Mild Steel
,”
Appl. Clay Sci.
,
42
(
3–4
), pp.
356
362
.10.1016/j.clay.2008.03.003
22.
Beavers
,
J. A.
, and
Durr
,
C. L.
,
1998
, “
Corrosion of Steel Piling in Nonmarine Applications
,” National Cooperative Highway Research Program, National Research Council, Technical Report No. 408.
23.
Yahaya
,
N.
,
Lim
,
K. S.
,
Noor
,
N. M.
,
Othman
,
S. R.
, and
Abdullah
,
A.
,
2011
, “
Effect of Clay and Moisture Content on Soil Corrosion Dynamic
,”
Malays. J. Civil Eng.
,
23
(
1
), pp.
24
32
.
24.
Peverill
,
K. I.
,
Sparrow
,
L. A.
, and
Reuter
,
D. J.
,
1999
,
Soil Analysis: An Interpretation Manual
,
CSIRO Publishing
,
Collingwood, Australia
.
You do not currently have access to this content.