The purpose of this paper is to study the transient temperature responses of a hollow cylinder subjected to periodic boundary conditions, which comprises with a short heating period (a few milliseconds) and a relative long cooling period (a few seconds). During the heating process, the inner surface is under complex convection heat transfer condition, which is not so easy to approximate. This paper first calculated the gas temperature history and the convective heat transfer coefficient history between the gas flow and the inner surface and then they were applied to the inner surface as boundary conditions. Finite element analysis was used to solve the transient heat transfer equations of the hollow cylinder. Results show that the inner surface is under strong thermal impact and large temperature gradient occurs in the region adjacent to the inner surface. Sometimes chromium plating and water cooling are used to relief the thermal shock of a tube under such thermal conditions. The effects of these methods are analyzed, and it indicates that the chromium plating can reduce the maximum temperature of the inner surface for the first cycle during periodic heating and the water cooling method can reduce the growth trend of the maximum temperature for sustained conditions. We also investigate the effects of different parameters on the maximum temperature of the inner surface, like chromium thickness, water velocity, channel diameter, and number of cooling channels.

References

References
1.
Lawton
,
B.
,
2001
, “
Temperature and Heat Transfer at the Commencement of Rifling of a 155 mm Gun
,”
19th International Symposium of Ballistics 2001
,
Interlaken
,
Switzerland
.
2.
Boisson
,
D.
,
Légeret
,
G.
, and
Barthélémy
,
J. F.
,
2001
, “
Experimental Investigation of Heat Transfer in a 120 mm Testing Gun Barrel Based on a Space Marching Finite Difference Algorithm for the Inverse Conduction Method
,”
19th International Symposium of Ballistics 2001
,
Interlaken
,
Switzerland
.
3.
Johnston
,
I. A.
,
2005
, “
Understanding and Predicting Gun Barrel Erosion
,” Report No. DSTO-TR-1757.
4.
Cooper
,
L. Y.
,
1977
, “
Temperature of a Cylindrical Cavity Wall Heated by a Periodic Flux
,”
Int. J. Heat Mass Transfer
,
20
(
5
), pp.
527
534
.10.1016/0017-9310(77)90099-0
5.
Lu
,
X.
,
Tervola
,
P.
, and
Viljanen
,
M.
,
2006
, “
Transient Analytical Solution to Heat Conduction in Composite Circular Cylinder
,”
Int. J. Heat Mass Transfer
,
49
(
1
), pp.
341
348
.10.1016/j.ijheatmasstransfer.2005.06.019
6.
Fan
,
S.
, and
Barber
,
J. R.
,
2002
, “
Solution of Periodic Heating Problems by the Transfer Matrix Method
,”
Int. J. Heat Mass Transfer
,
45
(
5
), pp.
1155
1158
.10.1016/S0017-9310(01)00216-2
7.
Özışık
,
G.
,
Genç
,
M. S.
, and
Yapıcı
,
H.
,
2012
, “
Transient Thermal Stress Distribution in a Circular Pipe Heated Externally With a Periodically Moving Heat Source
,”
Int. J. Press. Vessels Pip.
,
99–100
, pp.
9
22
.10.1016/j.ijpvp.2012.07.011
8.
Lee
,
Z.
,
2005
, “
Hybrid Numerical Method Applied to 3-D Multilayered Hollow Cylinder With Periodic loading Conditions
,”
Appl. Math. Comput.
,
166
(
1
), pp.
95
117
.10.1016/j.amc.2004.04.038
9.
Wang
,
X.
,
1995
, “
Thermal Shock in a Hollow Cylinder Caused by Rapid Arbitrary Heating
,”
J. Sound Vib.
,
183
(
5
), pp.
899
906
.10.1006/jsvi.1995.0294
10.
Yun
,
Y.
,
Jang
,
I.
, and
Tang
,
L.
,
2009
, “
Thermal Stress Distribution in Thick Wall Cylinder Under Thermal Shock
,”
J. Press. Vessel Technol.
,
131
(
2
), p.
021212
.10.1115/1.3066882
11.
Segall
,
A. E.
,
2001
, “
Thermoelastic Analysis of Thick-Walled Vessels Subjected to Transient Thermal Loading
,”
J. Press. Vessel Technol.
,
123
(
1
), pp.
146
149
.10.1115/1.1320818
12.
Segall
,
A. E.
,
2003
, “
Transient Analysis of Thick-Walled Piping Under Polynomial Thermal Loading
,”
Nucl. Eng. Des.
,
226
(
3
), pp.
183
191
.10.1016/S0029-5493(03)00138-9
13.
Yapici
,
H.
,
Özişik
,
G.
, and
Genç
,
M. S.
,
2010
, “
Non-Uniform Temperature Gradients and Thermal Stresses Produced by a Moving Heat Flux Applied on a Hollow Sphere
,”
Sadhana
,
35
(
2
), pp.
195
213
.10.1007/s12046-010-0017-x
14.
Yapici
,
H.
,
Genç
,
M. S.
, and
Özişik
,
G.
,
2008
, “
Transient Temperature and Thermal Stress Distributions in a Hollow Disk Subjected to a Moving Uniform Heat Source
,”
J. Therm. Stresses
,
31
(
5
), pp.
476
493
.10.1080/01495730801912652
15.
Yapici
,
H.
, and
Baştürk
,
G.
,
2006
, “
Reduction of Thermally Induced Stress in a Solid Disk Heated With Radially Periodic Expanding and Contracting Ring Heat Flux
,”
J. Mater. Process. Technol.
,
180
(
1
), pp.
279
290
.10.1016/j.jmatprotec.2006.07.005
16.
Moulik
,
P. N.
,
Yang
,
H.
, and
Chandrasekar
,
S.
,
2001
, “
Simulation of Thermal Stresses Due to Grinding
,”
Int. J. Mech. Sci.
,
43
(
3
), pp.
831
851
.10.1016/S0020-7403(00)00027-8
17.
Sen
,
S.
,
Aksakal
,
B.
, and
Ozel
,
A.
,
2000
, “
Transient and Residual Thermal Stresses in Quenched Cylindrical Bodies
,”
Int. J. Mech. Sci.
,
42
(
10
), pp.
2013
2029
.10.1016/S0020-7403(99)00063-6
18.
Mahdi
,
M.
, and
Zhang
,
L.
,
1997
, “
Applied Mechanics in Grinding-V. Thermal Residual Stresses
,”
Int. J. Mach. Tools Manuf.
,
37
(
5
), pp.
619
633
.10.1016/S0890-6955(96)00055-7
19.
Cao
,
Y.
, and
Faghri
,
A.
,
1991
, “
Transient Two-Dimensional Compressible Analysis for High-Temperature Heat Pipes With Pulsed Heat Input
,”
Numer. Heat Transfer, Part A
,
18
(
4
), pp.
483
502
.10.1080/10407789008944804
20.
Mistry
,
P. R.
,
Thakkar
,
F. M.
,
De
,
S.
, and
DasGupta
,
S.
,
2010
, “
Experimental Validation of a Two-Dimensional Model of the Transient and Steady-State Characteristics of a Wicked Heat Pipe
,”
Exp. Heat Transfer
,
23
(
4
), pp.
333
348
.10.1080/08916150903564804
21.
Copley
,
J. A.
, and
Thomas
,
W. C.
,
1974
, “
Two-Dimensional Transient Temperature Distribution in Cylindrical Bodies With Pulsating Time and Space-Dependent Boundary Conditions
,”
ASME J. Heat Transfer
,
96
(
3
), pp.
300
306
.10.1115/1.3450196
22.
Heiser
,
R.
,
Seiler
,
F.
, and
Zimmerman
,
K.
,
1993
, “
Computational Methods and Measurements of Heat Transfer to Gun Barrels With and Without Coatings
,”
14th International Symposium on Ballistics 1993
,
Quebec
,
Canada
.
23.
Bass
,
M.
, and
De Swardt
,
R. R.
,
2006
, “
Laboratory Heat Transfer Experiments on a 155 mm Compound Gun Tube With Full Length Integral Mid-Wall Cooling Channels
,”
J. Press. Vessel Technol.
,
128
(
2
), pp.
279
284
.10.1115/1.2179434
24.
de Swardt
,
R. R.
, and
Andrews
,
T. D.
,
2006
, “
Stress Analysis of Autofrettaged Midwall Cooled Compound Gun Tubes
,”
J. Press. Vessel Technol.
,
128
(
2
), pp.
201
207
.10.1115/1.2172968
25.
Sun
,
Y.
, and
Zhang
,
X.
,
2015
, “
Heat Transfer Analysis of a Circular Pipe Heated Internally With a Cyclic Moving Heat Source
,”
Int. J. Therm. Sci.
,
90
, pp.
279
289
.10.1016/j.ijthermalsci.2014.12.009
26.
Lawton
,
B.
,
2001
, “
Thermo-Chemical Erosion in Gun Barrels
,”
Wear
,
251
(
1
), pp.
827
838
.10.1016/S0043-1648(01)00738-4
27.
Conroy
,
P. J.
,
1991
, “
Gun Tube Heating
,” Report No. BRL-TR-3300.
28.
Gerber
,
N.
, and
Bundy
,
M.
,
1992
, “
Effect of Variable Thermal Properties on Gun Tube Heating
,” Report No. BRL-MR-3984.
29.
Nelson
,
C. W.
, and
Ward
,
J. R.
,
1981
, “
Calculation of Heat Transfer to the Gun Barrel Wall
,” Report No. ARBRL-MR-03094.
30.
Weinacht
,
P.
, and
Conroy
,
P.
,
1996
, “
A Numerical Method for Predicting Thermal Erosion in Gun Tubes
,” Report No. ARL-TR-1156.
31.
Chen
,
T.
,
Liu
,
C.
,
Jang
,
H.
, and
Tuan
,
P.
,
2007
, “
Inverse Estimation of Heat Flux and Temperature in Multi-Layer Gun Barrel
,”
Int. J. Heat Mass Transfer
,
50
(
11
), pp.
2060
2068
.10.1016/j.ijheatmasstransfer.2006.11.022
32.
Değirmenci
,
E.
, and
Hüsnü Dirikolu
,
M.
,
2012
, “
A Thermochemical Approach for the Determination of Convection Heat Transfer Coefficients in a Gun Barrel
,”
Appl. Therm. Eng.
,
37
, pp.
275
279
.10.1016/j.applthermaleng.2011.11.029
33.
Jin
,
Z.
,
2004
,
Interior Ballistics of Guns
,
Beijing University of Technology Press
,
Beijing
.
34.
Incropera
,
F. P.
,
2011
,
Fundamentals of Heat and Mass Transfer
,
John Wiley & Sons
,
Hoboken, NJ
.
35.
Chen
,
Y.
,
Song
,
Q.
, and
Wang
,
J.
,
2006
, “
New Technologies to Extend the Erosion Life of Gun Barrel
,”
Acta Armamentarii
,
27
(
2
), pp.
330
334
.10.3321/j
You do not currently have access to this content.