The mechanisms and pressure fields associated with the hydrostatic implosion of glass fiber reinforced polymer (GFRP) tubes with varying reinforcement are investigated using high-speed photography. Experiments are conducted in a large pressure vessel, designed to provide constant hydrostatic pressure throughout collapse. Three-dimensional (3D) digital image correlation (DIC) is used to capture full-field displacements, and dynamic pressure transducers measure the pressure pulse generated by the collapse. Results show that braided GFRP tubes release pressure waves with significantly greater impulse upon collapse as compared to filament-wound tubes, increasing their damage potential.

References

References
1.
Esmaeel
,
R. A.
,
Mohamed
,
A. K.
, and
Farid
,
T.
,
2012
, “
Assessment of the Environmental Effects on the Performance of FRP Repaired Steel Pipes Subjected to Internal Pressure
,”
ASME J. Pressure Vessel Technol.
,
134
(
4
), p.
041702
.10.1115/1.4005944
2.
Mouritz
,
A. P.
,
Gellert
,
E.
,
Burchill
,
P.
, and
Challis
,
K.
,
2001
, “
Review of Advanced Composite Structures for Naval Ships and Submarines
,”
Compos. Struct.
,
53
(
1
), pp.
21
42
.10.1016/S0263-8223(00)00175-6
3.
Urick
,
R. J.
,
1963
, “
Implosions as Sources of Underwater Sound
,”
J. Acoust. Soc. Am.
,
35
(
12
), pp.
2026
2027
.10.1121/1.1918898
4.
Orr
,
M.
, and
Schoenberg
,
M.
,
1976
, “
Acoustic Signatures From Deep Water Implosions of Spherical Cavities
,”
J. Acoust. Soc. Am.
,
59
(
5
), pp.
1155
1159
.10.1121/1.380977
5.
Turner
,
S. E.
,
2007
, “
Underwater Implosion of Glass Spheres
,”
J. Acoust. Soc. Am.
,
121
(
2
), pp.
844
852
.10.1121/1.2404921
6.
Ling
,
J.
,
Bishai
,
M.
,
Diwan
,
M.
,
Dolph
,
J.
,
Kettell
,
S.
,
Sexton
,
K.
,
Sharma
,
R.
,
Simos
,
N.
,
Stewart
,
J.
,
Tanaka
,
H.
,
Viren
,
B.
,
Arnold
,
D.
,
Tabor
,
P.
,
Turner
,
S.
,
Benson
,
T.
,
Wahl
,
D.
,
Wendt
,
C.
,
Hahn
,
A.
,
Kaducak
,
M.
,
Mantsch
,
P.
, and
Sundaram
,
S. K.
,
2013
, “
Implosion Chain Reaction Mitigation in Underwater Assemblies of Photomultiplier Tubes
,”
Nucl. Instrum. Methods Phys. Res., Sec. A
,
729
, pp.
491
499
.10.1016/j.nima.2013.07.056
7.
Harben
,
P. E.
, and
Boro
,
C.
,
2001
, “
Implosion Source Development and Diego Garcia Reflections
,”
23rd Department of Defense/Department of Energy Seismic Research Review
,
Jackson Hole, WY
, pp. 23–31.
8.
Turner
,
S. E.
, and
Ambrico
,
J. M.
,
2012
, “
Underwater Implosion of Cylindrical Metal Tubes
,”
ASME J. Appl. Mech.
,
80
(
1
), pp.
1
11
.10.1115/1.4006944
9.
Farhat
,
C.
,
Wang
,
C. G.
,
Main
,
A.
,
Kyriakides
,
S.
,
Lee
,
L. H.
,
Ravi-Chandar
,
K.
, and
Belytschko
,
T.
,
2013
, “
Dynamic Implosion of Underwater Cylindrical Shells: Experiments and Computations
,”
Int. J. Solids Struct.
,
50
(
19
), pp.
2943
2961
.10.1016/j.ijsolstr.2013.05.006
10.
Ikeda
,
C. M.
,
Wilkerling
,
J.
, and
Duncan
,
J. H.
,
2013
, “
The Implosion of Cylindrical Shell Structures in a High-Pressure Water Environment
,”
Proc. R. Soc. A
,
471
(
2175
), p.
20130443
.10.1098/rspa.2013.0443
11.
Moon
,
C. J.
,
In-Hoon
,
K.
,
Bae-Hyeon
,
C.
,
Jin-Hwe
,
K.
, and
Choi
,
J. H.
,
2010
, “
Buckling of Filament-Wound Composite Tubes Subjected to Hydrostatic Pressure for Underwater Vehicle Applications
,”
Compos. Struct.
,
92
(
9
), pp.
2241
2251
.10.1016/j.compstruct.2009.08.005
12.
Ross
,
C. T. F.
,
Little
,
A. P. F.
,
Haidar
,
Y.
, and
Waheeb
,
A. A.
,
2009
, “
Buckling of Carbon/Glass Composite Tubes Under Uniform External Hydrostatic Pressure
,”
Strain
,
47
(
s1
), pp.
156
174
.10.1111/j.1475-1305.2008.00475.x
13.
Smith
,
P. T.
,
Ross
,
C. T. F.
, and
Little
,
A. P. F.
,
2009
, “
Collapse of Composite Tubes Under Uniform External Hydrostatic Pressure
,”
J. Phys.: Conf. Ser.
,
181
, pp.
156
157
.10.1088/1742-6596/181/1/012043
14.
Hernández-Moreno
,
H.
,
Douchin
,
B.
,
Collombet
,
F.
,
Choqueuse
,
D.
, and
Davies
,
P.
,
2008
, “
Influence of Winding Pattern on the Mechanical Behavior of Filament-Wound Composite Tubes Under External Pressure
,”
Compos. Sci. Technol.
,
68
(
3–4
), pp.
1015
1024
.10.1016/j.compscitech.2007.07.020
15.
Olivas
,
J. D.
,
Ravi-Chandar
,
K.
,
Bustillos
,
J.
, and
Craigie
,
L.
,
1996
, “
Buckling of Filament-Wound Cylindrical Vessels Subjected to External Pressure
,”
ASME J. Pressure Vessel Technol.
,
118
(
2
), pp.
216
220
.10.1115/1.2842184
16.
Hur
,
S. H.
,
Son
,
H. J.
,
Kweon
,
J. H.
, and
Choi
,
J. H.
,
2008
, “
Postbuckling of Composite Tubes Under External Hydrostatic Pressure
,”
Compos. Struct.
,
86
(
1–3
), pp.
114
124
.10.1016/j.compstruct.2008.03.028
17.
Yang
,
C.
,
Pang
,
S. S.
, and
Zhao
,
Y.
,
1997
, “
Buckling Analysis of Thick-Walled Composite Pipe Under External Pressure
,”
J. Compos. Mater.
,
31
(
4
), pp.
409
426
.10.1177/002199839703100405
18.
Ramirez
,
G.
, and
Engelhardt
,
M. D.
,
2009
, “
Experimental Investigation of a Large-Scale Composite Riser Tube Under External Pressure
,”
ASME J. Pressure Vessel Technol.
,
131
(
5
), p. 051205.10.1115/1.3122773
19.
Pinto
,
M.
,
Gupta
,
S.
, and
Shukla
,
A.
,
2014
, “
Study of Implosion of Carbon/Epoxy Composite Hollow Cylinders Using 3D Digital Image Correlation
,”
Compos. Struct.
,
119
, pp.
272
286
.10.1016/j.compstruct.2014.08.040
20.
Sutton
,
M. A.
,
Orteu
,
J. J.
, and
Schreier
,
H. W.
,
2009
,
Image Correlation for Shape, Motion, and Deformation Measurements: Basic Concepts, Theory, and Applications
,
Springer
,
New York
.
21.
Gupta
,
S.
,
Parameswaran
,
V.
,
Sutton
,
M. A.
, and
Shukla
,
A.
,
2014
, “
Study of Dynamic Underwater Implosion Mechanics Using Digital Image Correlation
,”
Proc. R. Soc. A
,
470
(
2172
), p.
20140576
.10.1098/rspa.2014.0576
22.
Koudela
,
K. L.
, and
Strait
,
L. H.
,
1993
, “
Simplified Methodology for Prediction of Critical Buckling Pressure for Smooth-Bore Composite Cylindrical Shells
,”
J. Reinf. Plast. Compos.
,
12
(
5
), pp.
570
583
.10.1177/073168449301200507
23.
Von Mises
,
R.
,
1929
,
The Critical External Pressure of Cylindrical Tubes Under Uniform Radial and Axial Load
,
Stodolas Festschr
, U.S. Experimental Model Basin, Navy Yard, Washington, DC, pp.
418
430
(Translated by D. F. Windenburg).
24.
“abaqus 6.12 Analysis User Manual
,
2012
, “Internet Manual,” Dassault Systèmes Simulia Corporation, Providence, RI.
25.
Cole
,
R. H.
,
1948
,
Underwater Explosions
,
Princeton University
,
Princeton, NJ
.
26.
Fugal
,
D. L.
,
2009
,
Conceptual Wavelets in Digital Signal Processing
,
Space and Signals Technical Publishing
,
San Diego, CA
.
27.
Sridharan
,
S.
,
2008
,
Delamination Behaviour of Composites
,
Woodhead
,
Cambridge, UK
.10.1201/9781439832677
28.
Brennen
,
C. E.
,
1995
,
Cavitation and Bubble Dynamics
,
Oxford University
,
New York
.
29.
Kyriakides
,
S.
, and
Netto
,
T. A.
,
2000
, “
On the Dynamics of Propagating Buckles in Pipelines
,”
Int. J. Solids Struct.
,
37
(
46–47
), pp.
6843
6867
.10.1016/S0020-7683(99)00317-0
30.
Harte
,
A. M.
, and
Fleck
,
N. A.
,
2000
, “
On the Mechanics of Braided Composites in Tension
,”
Eur. J. Mech. A/Solids
,
19
(
2
), pp.
259
275
.10.1016/S0997-7538(99)00164-3
31.
Turner
,
S. E.
,
2004
, “
Small-Scale Implosion Testing of Glass and Aluminum Cylinders
,” NUWC-NPT Technical Memorandum 04-061, Naval Undersea Warfare Center Division, Newport, RI.
32.
Reid
,
W. D.
,
1996
, “
The Response of Surface Ships to Underwater Explosions
,” DTSO Aeronautical and Maritime Research Laboratory, Melbourne, Technical Report No. DSTO-GD-0109.
33.
Inman
,
D. J.
,
2001
,
Engineering Vibration
,
Prentice Hall
,
Upper Saddle River, NJ
.
You do not currently have access to this content.