An efficient and reliable numerical analysis for three-dimensional (3D) multipass welding simulation is proposed in this paper. A fast analysis method to calculate 3D residual stress distribution in the multipass welds using the iterative substructure method (ISM) was developed and validated using other numerical analysis and measurement results. First, the analysis results by the developed method were compared with those by a conventional method using a commercial finite element analysis code. The comparisons were made for the analysis accuracy and the computational speed of the residual stress analysis in a multipass welded pipe joint. Both sets of analysis results for residual stress agreed well with each other. Furthermore, it was clarified that the developed analysis method could calculate the residual stress in a shorter computing time than the conventional analysis method. Next, the residual stress of the pipe joint computed by the developed analysis method was compared with measurement results obtained using the strain gauge method, and the good analysis accuracy was shown. Consequently, these comparisons demonstrated that the developed method for multipass welding simulation based on the ISM could calculate the residual stress distribution much faster at high analysis accuracy even when the size of the welding problems, such as for multipass welding, was large.

References

References
1.
Sedriks
,
A. J.
,
1996
,
Corrosion of Stainless Steels
,
Wiley
,
New York
.
2.
Viswanathan
,
R.
,
1989
,
Damage Mechanisms and Life Assessment of High-Temperature Components
,
ASM International, Metals Park
,
Ohio
, pp.
111
182
.
3.
Ruud
,
C. O.
,
1982
, “
A Review of Selected Non-Destructive Methods for Residual Stress Measurement
,”
NDT Int.
,
15
(
1
), pp.
15
23
.10.1016/0308-9126(82)90083-9
4.
Beghini
,
M.
, and
Bertini
,
L.
,
1997
, “
Recent Advances in the Hole Drilling Method for Residual Stress Measurement
,”
J. Mater. Eng. Perform.
,
7
(
2
), pp.
163
172
.10.1361/105994998770347882
5.
Hayashi
,
M.
,
Ishiwata
,
M.
,
Morii
,
Y.
,
Minakawa
,
N.
, and
Root
,
J. H.
,
2000
, “
Residual Stress Distribution in Carbon Steel Pipe Welded Joint Measured by Neutron Diffraction
,”
Mater. Sci. Res. Int.
,
6
(
4
), pp.
287
294
.10.2472/jsms.49.12Appendix_287
6.
Matzkanin
,
G. A.
, and
Yolken
,
T.
,
2001
, “
Review of Techniques for Nondestructively Characterizing Residual Stress in Metals
,”
Proceedings of the ASME Pressure Vessels Piping Division Conference
, PVP-Vol. 429, pp.
1
8
.
7.
Withers
,
P. J.
,
Turski
,
M.
,
Edwards
,
L.
,
Bouchard
,
P. J.
, and
Buttle
,
D. J.
,
2008
, “
Recent Advance in Residual Stress Measurement
,”
Int. J. Pressure Vessels Piping
,
85
(
3
), pp.
118
127
.10.1016/j.ijpvp.2007.10.007
8.
Ganguly
,
S.
,
Stelmukh
,
V.
,
Edwaards
,
L.
, and
Fitzpatrick
,
M. E.
,
2008
, “
Analysis of Residual Stress in Metal-Inert-Gas-Welded Al-2024 Using Neutron and Synchrotron X-Ray Diffraction
,”
Mater. Sci. Eng. A
,
491
(1–2), pp.
248
257
.10.1016/j.msea.2008.01.085
9.
Mahmoudi
,
A. H.
,
Smith
,
D.
,
Truman
,
C. E.
, and
Pavier
,
M. J.
,
2009
, “
Application of the Modified Deep Hole Drilling Technique (iDHD) for Measuring Near Yield Non-Axisymmetric Residual Stresses
,”
ASME
Paper No. PVP2009-77940.10.1115/PVP2009-77940
10.
Maekawa
,
A.
,
Oumaya
,
T.
,
Noda
,
M.
,
Takahashi
,
S.
, and
Saito
,
T.
,
2010
, “
Residual Stress Distribution in Austenitic Stainless Steel Pipe Butt-Welded Joint Measured by Neutron Diffraction Technique
,”
Mater. Sci. Forum
,
652
, pp.
116
122
.10.4028/www.scientific.net/MSF.652.116
11.
Pagliaro
,
P.
,
Prime
,
M. B.
,
Swenson
,
H.
, and
Zuccarello
,
B.
,
2010
, “
Measuring Multiple Residual-Stress Components Using the Contour Method and Multiple Cuts
,”
Exp. Mech.
,
50
(
2
), pp.
187
194
.10.1007/s11340-009-9280-3
12.
Maekawa
,
A.
,
Nakacho
,
K.
,
Ma
,
N. X.
, and
Sato
,
R.
,
2010
, “
Residual Stress Measurement of Large-Bore Stainless Steel Pipes with Butt-Welded Joints by Inherent Strain Method
,”
Trans. JWRI
,
39
(
2
), pp.
65
67
.10.1299/kikaia.77.713
13.
Taylor
,
D. J.
,
Watkins
,
T. R.
,
Hubbard
,
C. R.
,
Hill
,
M. R.
, and
Melth
,
W. A.
,
2012
, “
Residual Stress Measurements of Explosively Clad Cylindrical Pressure Vessels
,”
ASME J. Pressure Vessel Technol.
,
134
(
1
), p.
011501
.10.1115/1.4004615
14.
Kudryavtsev
,
Y
.,
2013
, “
Ultrasonic Measurement of Residual Stresses in Welded Specimens and Structures
,”
ASME
Paper No. PVP2013-97184.10.1115/PVP2013-97184
15.
Ueda
,
Y.
, and
Yamakawa
,
T.
,
1971
, “
Analysis of Thermal Elastic–Plastic Stress and Strain During Welding by Finite Element Method
,”
Trans. Jpn. Weld. Soc.
,
2
(
2
), pp.
90
100
.
16.
Ueda
,
Y.
,
Murakawa
,
H.
,
Nakacho
,
K.
, and
Ma
,
N. X.
,
1995
, “
Establishment of Computational Welding Mechanics
,”
Trans. JWRI
,
24
(
2
), pp.
73
86
.
17.
Mackerle
,
J.
,
1996
, “
Finite Element Analysis and Simulation of Welding: A Bibliography (1976–1996)
,”
Model. Simul. Mater. Sci. Eng.
,
4
(5), pp.
501
533
.10.1088/0965-0393/4/5/006
18.
Teng
,
T. L.
, and
Chang
,
P. H.
,
1997
, “
A Study of Residual Stresses in Multi-Pass Girth-Butt Welded Pipes
,”
Int. J. Pressure Vessels Piping
,
74
(
1
), pp.
59
70
.10.1016/S0308-0161(97)00091-4
19.
Fricke
,
S.
,
Keim
,
E.
, and
Schmidt
,
J.
,
2001
, “
Numerical Weld Modeling—A Method for Calculating Weld-Induced Residual Stresses
,”
Nucl. Eng. Des.
,
206
(
2–3
), pp.
139
150
.10.1016/S0029-5493(00)00414-3
20.
Boitout
,
F.
, and
Bergheau
,
J. M.
,
2003
, “
The Numerical Simulation of Welding in Europe: Present Capabilities and Future Trends
,”
Trans. JWRI
,
32
(
1
), pp.
197
206
.
21.
Yaghi
,
A.
,
Hyde
,
T. H.
,
Becker
,
A. A.
,
Sun
,
W.
, and
Williams
,
J. A.
,
2006
, “
Residual Stress Simulation in Thin and Thick-Walled Stainless Steel Pipe Welds Including Pipe Diameter Effect
,”
Int. J. Pressure Vessels Piping
,
83
(
11
), pp.
864
874
.10.1016/j.ijpvp.2006.08.014
22.
Lindgren
,
L. E.
,
2006
, “
Numerical Modelling of Welding
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
48
), pp.
6710
6736
.10.1016/j.cma.2005.08.018
23.
Rudland
,
D.
,
Zhang
,
T.
,
Wilkowski
,
G.
, and
Csontos
,
A.
,
2008
, “
Welding Residual Stress Solutions for Dissimilar Metal Surge Line Nozzles Welds
,”
Proceedings of ASME Pressure Vessels and Piping Division Conference
, PVP2008-61285.
24.
Li
,
L.
,
Asifa
,
K.
,
Li
,
H.
, and
Khurram
,
S.
,
2013
, “
FE Simulation Methods to Predict Welding Residual Stresses
,”
Key Eng. Mater.
,
525–526
, pp.
281
284
.10.4028/www.scientific.net/KEM.525-526.281
25.
Mochizuki
,
M.
,
Hayashi
,
M.
, and
Hattori
,
T.
,
1999
, “
Comparison of Five Evaluation Methods of Residual Stress in a Welded Pipe Joint
,”
JSME Int. J., Ser. A
,
42
(
1
), pp.
104
110
.10.1299/jsmea.42.104
26.
Sattari-Far
,
I.
, and
Farahani
,
M. R.
,
2009
, “
Effect of the Weld Groove Shape and Pass Number on Residual Stresses in Butt-Welded Pipes
,”
Int. J. Pressure Vessels Piping
,
86
(
11
), pp.
723
731
.10.1016/j.ijpvp.2009.07.007
27.
Deng
,
D.
,
Murakawa
,
H.
, and
Liang
,
W.
,
2008
, “
Numerical and Experimental Investigations on Welding Residual Stress in Multi-Pass Butt-Welded Austenitic Stainless Steel Pipe
,”
Comput. Mater. Sci.
,
42
(
2
), pp.
234
244
.10.1016/j.commatsci.2007.07.009
28.
Rybicki
,
E. F.
, and
Stonesifer
,
R. B.
,
1979
, “
Computation of Residual Stresses due to Multipass Welds in Piping Systems
,”
ASME J. Pressure Vessel Technol.
,
101
(
2
), pp.
149
154
.10.1115/1.3454614
29.
Lindgren
,
L. E.
,
Haggbland
,
H. A.
,
McDill
,
J. M. J.
, and
Oddy
,
A. S.
,
1997
, “
Automatic Remeshing for Three-Dimensional Finite Element Simulation of Welding
,”
Comput. Methods Appl. Mech. Eng.
,
147
(3–4), pp.
401
409
.10.1016/S0045-7825(97)00025-X
30.
Zhang
,
J.
,
Dong
,
P.
, and
Brust
,
F. W.
,
1997
, “
A 3D Composite Shell Element Model for Residual Stress Analysis of Multi-Pass Welds
,”
Transactions of 14th International Conference on Structural Mechanics in Reactor Technology (SMiRT 14)
, BLDW/6, pp.
335
344
.
31.
Brickstad
,
B.
, and
Josefson
,
B. L.
,
1998
, “
A Parametric Study of Residual Stresses in Multi-Pass Butt-Welded Stainless Steel Pipes
,”
Int. J. Pressure Vessels Piping
,
75
(
1
), pp.
11
25
.10.1016/S0308-0161(97)00117-8
32.
Dong
,
P.
,
2001
, “
Residual Stress Analyses of a Multi-Pass Girth Weld: 3-D Special Shell Versus Axisymmetric Models
,”
ASME J. Pressure Vessel Technol.
,
123
(
2
), pp.
207
213
.10.1115/1.1359527
33.
Sarkani
,
S.
,
Tritchkov
,
V.
, and
Michaelov
,
G.
,
2000
, “
An Efficient Approach for Computing Residual Stresses in Welding Joints
,”
Finite Elem. Anal. Des.
,
35
(
3
), pp.
247
268
.10.1016/S0168-874X(99)00068-2
34.
Hurrel
,
P.
,
Watson
,
C.
,
Bouchard
,
J.
,
Smith
,
M.
,
Dennis
,
R.
,
Leggatt
,
N.
,
Bate
,
S.
, and
Warren
,
A.
,
2009
, “
Development of Weld Modeling Guidelines in the UK
,”
ASME
Paper No. PVP2009-77540.10.1115/PVP2009-77540
35.
Zhang
,
X.
,
Luo
,
Y.
, and
Wang
,
Y.
,
2010
, “
Study on Prediction of Welding Deformation for Large-Scale Structure by T–E–P FEM Using 3D Shell Element
,”
Trans. JWRI
,
39
(
2
), pp.
73
75
.
36.
Depradeux
,
L.
, and
Rossillon
,
F.
,
2013
, “
A Time Saving Method to Compute Multi-Pass Weld Residual Stresses
,”
ASME
Paper No. PVP2013-97239.10.1115/PVP2013-97239
37.
Runnemalm
,
H.
, and
Hyun
,
S.
,
2000
, “
Three-Dimensional Welding Analysis Using an Adaptive Mesh Scheme
,”
Comput. Methods Appl. Mech. Eng.
,
189
(
2
), pp.
515
523
.10.1016/S0045-7825(99)00304-7
38.
Qingyu
,
S.
,
Anli
,
L.
,
Haiyan
,
Z.
, and
Aiping
,
W.
,
2002
, “
Development and Application of the Adaptive Mesh Technique in the Three-Dimensional Numerical Simulation of the Welding Process
,”
J. Mater. Process. Technol.
,
121
(2–3), pp.
167
172
.10.1016/S0924-0136(01)00830-5
39.
Duranton
,
P.
,
Devaux
,
J.
,
Robin
,
V.
,
Gilles
,
P.
, and
Bergheau
,
J. M.
,
2004
, “
3D Modelling of Multipass Welding of a 316L Stainless Steel Pipe
,”
J. Mater. Process. Technol.
,
153–154
, pp.
457
463
.10.1016/j.jmatprotec.2004.04.128
40.
Brown
,
S. B.
, and
Song
,
H.
,
1993
, “
Rezoning and Dynamic Substructuring Techniques in FEM Simulations of Welding Processes
,”
J. Eng. Ind.
,
115
(
4
), pp.
415
423
.10.1115/1.2901784
41.
Murakawa
,
H.
,
Oda
,
I.
,
Ito
,
S.
,
Serizawa
,
H.
,
Shibahara
,
M.
, and
Nishikawa
,
H.
,
2005
, “
Iterative Substructure Method for Fast Computation of Thermal Elastic Plastic Welding Problems
,”
J. Kansai Soc. Nav. Archit., Jpn.
,
243
, pp.
67
70
(in Japanese).
42.
Murakawa
,
H
.,
2010
, “
Fast Computational Scheme for Large Scale Temperature Dependent Transient Nonlinear Problems in Welding Mechanics
,”
Proceedings of the Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2010 (SNA
+
MC2010)
, OA2.
43.
Nishikawa
,
H.
,
Serizawa
,
H.
, and
Murakawa
,
H.
,
2007
, “
Actual Application of FEM to Analysis of Large Scale Mechanical Problems in Welding
,”
Sci. Technol. Weld. Joining
,
12
(
2
), pp.
147
152
.10.1179/174329307X164274
44.
Maekawa
,
A.
,
Noda
,
M.
,
Takahashi
,
S.
,
Oumaya
,
T.
,
Serizawa
,
H.
, and
Murakawa
,
H.
,
2009
, “
Evaluation of Residual Stress Distribution in Austenitic Stainless Steel Pipe Butt-Welded Joint
,”
Q. J. Jpn. Weld. Soc.
,
27
(
2
), pp.
240
244
.10.2207/qjjws.27.240s
45.
Maekawa
,
A.
,
Takahashi
,
S.
,
Serizawa
,
H.
, and
Murakawa
,
H.
,
2011
, “
Fast Computational Residual Stress Analysis for Welded Pipe Joint Based on Iterative Substructure Method
,”
ASME
Paper No. PVP2011-57237.10.1115/PVP2011-57237
46.
Maekawa
,
A.
,
Kawahara
,
A.
,
Serizawa
,
H.
, and
Murakawa
,
H.
,
2014
, “
Fast Simulation for Multi-Pass Welding Process Using Iterative Substructure Method: Investigation of Optimization and Efficient Computation
,”
ASME
Paper No. PVP2014-28185.10.1115/PVP2014-28185
47.
ASME Boiler and Pressure Vessel Committee
,
1995
, Materials, Part D Properties, American Society of Mechanical Engineers, New York, Sec. II.
48.
ABAQUS Inc., 2003, ABAQUS User’s Manual, Version 6.4.
49.
Rosenthal
,
D.
, and
Norton
,
J. T.
,
1945
, “
A Method of Measuring Triaxial Residual Stress in Plates
,”
Weld. J.
,
24
, pp.
295
307
.
50.
Takahashi
,
E.
,
Iwai
,
K.
, and
Satoh
,
K.
,
1979
, “
A Method of Measuring Triaxial Residual Stress in Heavy Section Butt Weldments
,”
Trans. Jpn. Weld. Soc.
,
10
(
1
), pp.
36
45
.
51.
Iwai
,
K.
, and
Takahashi
,
E.
,
1986
, “
A New Measuring Method for Axisymmetrical Residual Stress Distribution in a Thick-Wall Pipe
,”
Q. J. Jpn. Weld. Soc.
,
4
(
1
), pp.
143
147
.10.2207/qjjws.4.143
52.
Sato
,
K.
,
1988
,
Handbook of Welded Structures
,
Kuroki Shuppan Co. Ltd.
,
Osaka, Japan
, pp.
116
121
(in Japanese).
53.
Maekawa
,
A.
,
Kawahara
,
A.
,
Serizawa
,
H.
, and
Murakawa
,
H.
,
2013
, “
Fast Computational Simulation for Multi-Pass Welding Pipe Joint Based on Iterative Substructure Method
,”
Trans. Jpn. Soc. Mech. Eng., Ser. A
,
79
(
808
), pp.
1852
1856
(in Japanese).10.1299/kikaia.79.1852
54.
Maekawa
,
A.
,
Kawahara
,
A.
,
Serizawa
,
H.
, and
Murakawa
,
H.
,
2015
, “
Fast Three-Dimensional Multipass Welding Simulation Using an Iterative Substructure Method
,”
J. Mater. Proc. Technol.
,
215
, pp.
30
41
.10.1016/j.jmatprotec.2014.08.004
55.
Nishikawa
,
H.
,
2006
, “
Development and Actual Application of FEM to Analysis of Large Scale Mechanical Problem in Welding
,” Ph.D. thesis,
Osaka University
, Ibaraki,
Japan
(in Japanese).
56.
Maekawa
,
A.
,
Kawahara
,
A.
,
Serizawa
,
H.
, and
Murakawa
,
H.
,
2012
, “
Prediction of Weld Residual Stress in a PWR Pressurizer Surge Nozzle: A Proposed Fast Computational 3D Analysis Method and Influence of Its Heat Source Model
,”
ASME
Paper No. PVP2012-78032.10.1016/j.msea.2008.01.085
57.
Maekawa
,
A.
,
Kawahara
,
A.
,
Serizawa
,
H.
, and
Murakwa
,
H.
,
2013
, “
Residual Stress Study in Dissimilar Metal Welds of a PWR Pressurizer Surge Nozzle: Validation of Developed Fast Analysis Method and Examination of Safe-End Length Effect
,”
ASME
Paper No. PVP2013-97176.10.1115/PVP2013-97176
58.
Maekawa
,
T.
,
Serizawa
,
H.
,
Nakacho
,
K.
, and
Murakawa
,
H.
,
2013
, “
Fast Finite Element Analysis of Weld Residual Stress in Large-Diameter Thick-Walled Stainless Steel Pipe Joints and Its Experimental Validation
,”
Q. J. Jpn. Weld. Soc.
,
31
(
4
), pp.
129
133
.10.2207/qjjws.31.129s
You do not currently have access to this content.