In the design of fast reactor plants, the most important failure mode to be prevented is creep–fatigue damage at elevated temperatures. 316FR stainless steel is a candidate material for the reactor vessel and internal structures of such plants. The development of a procedure for evaluating creep–fatigue life is essential. The method for evaluating creep–fatigue life implemented in the Japan Society of Mechanical Engineers code is based on the time fraction rule for evaluating creep damage. Equations such as the fatigue curve, dynamic stress–strain curve, creep rupture curve, and creep strain curve are necessary for calculating creep–fatigue life. These equations are provided in this paper and the predicted creep–fatigue life for 316FR stainless steel is compared with experimental data. For the evaluation of creep–fatigue life, the longest time to failure is about 100,000 h. The creep–fatigue life is predicted to an accuracy that is within a factor of 2 even in the case with the longest time to failure. Furthermore, the proposed method is compared with the ductility exhaustion method to investigate whether the proposed method gives conservative predictions. Finally, a procedure based on the time fraction rule for the evaluation of creep–fatigue life is proposed for 316FR stainless steel.

References

References
1.
Asada
,
Y.
,
Ueta
,
M.
,
Kanaoka
,
T.
,
Sukekawa
,
M.
, and
Nishida
,
T.
,
1992
, “
Current Status of the Development of Advanced 316-steel for FBR Structures, Stress Classification, Robust Methods, and Elevated Temperature Design
,” PVP-Vol.230, Stress Classification, Robust Methods, and Elevated Temperature Design, edited by Becht IV, C., Seshadri, R., Marriott, D., Book No. G00665, ASME, pp. 61–65.
2.
Nakazawa
,
T.
,
Kimura
,
H.
,
Kimura
,
K.
, and
Kaguchi
,
H.
,
2003
, “
Advanced Type Stainless Steel 316FR for Fast Breeder Reactor Structures
,”
J. Mater. Process. Technol.
,
143–144
(2), pp.
905
909
.10.1016/S0924-0136(03)00484-9
3.
Nakazawa
,
T.
,
Kimura
,
H.
,
Tendo
,
M.
, and
Komatsu
,
H.
,
2000
, “
Effects of Carbon, Molybdenum, and Phosphorus Contents on Creep Rupture Properties of Low Carbon Medium Nitrogen Type 316 Stainless Steel
,”
J. Jpn. Inst. Met.
,
64
(2), pp.
926
933
(in Japanese).
4.
Japan Society of Mechanical Engineers
,
2012
,
Code for Nuclear Power Generation Facilities, Rules on Design and Construction for Nuclear Power Plants, Section II Fast Reactor Standards
,
Japan Society of Mechanical Engineers
, Saporro, Japan, (in Japanese).
5.
Odaka
,
S.
,
Kato
,
S.
,
Yoshida
,
E.
,
Kawakami
,
T.
,
Suzuki
,
T.
,
Kawashima
,
S.
, and
Ishigami
,
K.
,
2005
, “
Material Test Data of 316FR Steel (IX)
,” Report No. JNC TN9450 2005-001 (in Japanese).
6.
Takahashi
,
Y.
,
Shibamoto
,
H.
, and
Inoue
,
K.
,
2008
, “
Study on Creep–Fatigue Life Prediction Methods for Low-Carbon Nitrogen-Controlled 316 Stainless Steel (316FR)
,”
Nucl. Eng. Des.
,
238
(
2
), pp.
322
335
.10.1016/j.nucengdes.2006.09.017
7.
Takahashi
,
Y.
,
Shibamoto
,
H.
, and
Inoue
,
K.
,
2008
, “
Long-Term Creep Rupture Behavior of Smoothed and Notched Bar Specimens of Low-Carbon Nitrogen-Controlled 316 Stainless Steel (316FR) and Their Evaluation
,”
Nucl. Eng. Des.
,
238
(
2
), pp.
310
321
.10.1016/j.nucengdes.2006.09.010
8.
Date
,
S.
, and
Otani
,
T.
,
2008
, “
Long Term Creep–Fatigue Behavior and Fracture Morphology of 316FR Developed for FBR
,”
Proceedings of the 46th Symposium on Strength of Materials at High Temperatures
, Dec. 4–5, pp.
43
47
.
9.
Onizawa
,
T.
,
Nagae
,
Y.
,
Takaya
,
S.
, and
Asayama
,
T.
,
2013
, “
Development of 2012 Edition of JSME Code for Design and Construction of Fast Reactors (2) Development of the Material Strength Standard of 316FR Stainless Steel
,”
ASME
Paper No. PVP2013-97608.10.1115/PVP2013-97608
10.
Takahashi
,
Y.
,
Date
,
S.
, and
Nakazawa
,
T.
,
1997
, “
Effect of Grain Size on High Temperature Strength of Fast Reactor Spec.SUS316
,”
J. Soc. Mater. Sci. Jpn.
,
46
(
11
), pp.
1274
1279
.10.2472/jsms.46.1274
11.
Sauzay
,
M.
,
Mottot
,
M.
,
Allais
,
L.
,
Noblecourt
,
M.
,
Monnet
,
I.
, and
Perinet
,
J.
,
2004
, “
Creep–Fatigue Behavior of an AISI Stainless Steel at 550 Degree C
,”
Nucl. Eng. Des.
,
232
(
3
), pp.
219
236
.10.1016/j.nucengdes.2004.05.005
12.
Kim
,
D. W.
,
Chang
,
J.-H.
, and
Ryu
,
W.-S.
,
2008
, “
Evaluation of the Creep–Fatigue Damage Mechanism of Type 316L and Type 316LN Stainless Steel
,”
Int. J. Pressure Vessels Piping
,
85
(
6
), pp.
378
384
.10.1016/j.ijpvp.2007.11.013
13.
Aoto
,
K.
,
Komine
,
R.
,
Ueno
,
F.
,
Kawasaki
,
H.
, and
Wada
,
Y.
,
1994
, “
Creep–Fatigue Evaluation of Normalized and Tempered Modified 9Cr-1Mo
,”
Nucl. Eng. Des.
,
153
(
1
), pp.
97
110
.10.1016/0029-5493(94)90024-8
14.
Takahashi
,
Y.
,
Dogan
,
B.
, and
Gandy
,
D.
,
2009
, “
Systematic Evaluation of Creep–Fatigue Life Prediction Methods for Various Alloys
,”
ASME
Paper No. PVP2009-77990.10.1115/PVP2009-77990
15.
British Energy Generation Ltd.
,
2003
,
An Assessment Procedure for the High Temperature Response of Structures
, R5 Issue 3, by
R. A.
Ainsworth
, ed.,
British Energy Generation Ltd.
, UK.
You do not currently have access to this content.