Modern installation techniques for marine pipelines and subsea risers are often based on the reel-lay method, which introduces significant (plastic) strains on the pipe during reeling and unreeling. The safe assessment of cracklike flaws under such conditions requires accurate estimations of the elastic–plastic crack driving forces, ideally expressed in a strain-based formulation to better account for the displacement controlled nature of the reeling method. This paper aims to facilitate such assessments by presenting a strain-based expression of the well-known Electric Power Research Institute (EPRI) estimation scheme for the J integral, which is directly based upon fully plastic descriptions of fracture behavior under significant plasticity. Parametric finite element simulations of bending of circumferentially cracked pipes have been conducted for a set of crack geometries, pipe dimensions, and material hardening properties representative of current applications. These provide the numerical assessment of the crack driving force upon which the nondimensional factors of the EPRI methodology, which scale J with applied strain, are derived. Finally, these factors are presented in convenient graphical and tabular forms, thus allowing the direct and accurate assessment of the J integral for circumferentially cracked pipes subjected to reeling. Further results show that crack driving force values estimated using the proposed methodology and the given g1 factors are in very close agreement to those obtained directly from the finite element simulations.

References

References
1.
Kyriakides
,
S.
, and
Corona
,
E.
,
2007
, Mechanics of Offshore Pipelines, Vol. 1: Buckling and Collapse, Elsevier. Available at: http://store.elsevier.com/Mechanics-of-Offshore-Pipelines/Stelios-Kyriakides/isbn-9780080551401/
2.
British Standard Institution,
2005
, Guide on Methods for Assessing the Acceptability of Flaws in Metallic Structures, Paper No. BS 7910.
3.
American Petroleum Institute,
2007
, Fitness-for-Service, No. API 579/ASME FFS-1.
4.
Budden
,
P. J.
,
2006
, “
Failure Assessment Diagram Methods for Strain-Based Fracture
,”
Eng. Fract. Mech.
,
73
(5)
, pp.
537
552
.10.1016/j.engfracmech.2005.09.008
5.
Nourpanah
,
N.
, and
Taheri
,
F.
,
2010
, “
Development of a Reference Strain Approach for Assessment of Fracture Response of Reeled Pipelines
,”
Eng. Fract. Mech.
,
77
(12)
, pp.
2337
2353
.10.1016/j.engfracmech.2010.04.030
6.
Ainsworth
,
R. A.
,
1984
, “
The Assessment of Defects in Structures of Strain Hardening Materials
,”
Eng. Fract. Mech.
,
19
(4)
, pp.
633
642
.10.1016/0013-7944(84)90096-1
7.
Linkens
,
D.
,
Formby
,
C. L.
, and
Ainsworth
,
R. A.
,
2000
, “
A Strain-Based Approach to Fracture Assessments: Example Applications
,”
5th International Conference on Engineering Structural Integrity Management
, pp.
45
52
. Available at: https://getinfo.de/app/A-Strain-Based-Approach-to-Fracture-Assessment/id/BLCP%3ACN039352631
8.
Tkaczyk
,
T.
,
O'Dowd
,
N. P.
, and
Nikbin
,
K.
,
2009
, “
Fracture Assessment Procedures for Steel Pipelines Using a Modified Reference Stress Solution
,”
ASME J. Pressure Vessel Technol.
,
131
(3)
, p.
031409
.10.1115/1.3122769
9.
Budden
,
P. J.
, and
Ainsworth
,
R. A.
,
2012
, “
The Shape of a Strain-Based Failure Assessment Diagram
,”
Int. J. Press. Vessels Pip.
,
89
, pp.
59
66
.10.1016/j.ijpvp.2011.09.004
10.
Jayadevan
,
K. R.
,
Østby
,
E.
, and
Thaulow
,
C.
,
2004
, “
Fracture Response of Pipelines Subject to Large Plastic Deformation Under Tension
,”
Int. J. Press. Vessels Pip.
,
81
, pp.
771
783
.10.1016/j.ijpvp.2004.04.005
11.
Østby
,
E.
,
Jayadevan
,
K. R.
, and
Thaulow
,
C.
,
2005
, “
Fracture Response of Pipelines Subject to Large Plastic Deformation Under Bending
,”
Int. J. Press. Vessels Pip.
,
82
(9)
, pp.
201
215
.10.1016/j.ijpvp.2004.08.012
12.
Østby
,
E.
, and
Hellesvik
,
A. O.
,
2008
, “
Large-Scale Experimental Investigation of the Effect of Biaxial Loading on the Deformation Capacity of Pipes With Defects
,”
Int. J. Press. Vessels Pip.
,
85
(11)
, pp.
814
824
.10.1016/j.ijpvp.2008.04.009
13.
Kumar
,
K.
,
German
,
M. D.
, and
Shih
,
C. F.
,
1981
, “An Engineering Approach to Elastic-Plastic Fracture Analysis,” Electric Power Research Institute, Palo Alto, CA, EPRI Report No. NP-1931.
14.
Chiodo
,
M. S. G.
, and
Ruggieri
,
C.
,
2010
, “
J and CTOD Estimation Procedure for Circumferential Surface Cracks in Pipes Under Bending
,”
Eng. Fract. Mech.
,
77
(3)
, pp.
415
436
.10.1016/j.engfracmech.2009.10.001
15.
Tada
,
H.
,
Paris
,
P. C.
, and
Irwin
,
G. R.
,
1985
,
The Stress Analysis of Cracks Handbook
,
2 ed.
,
Paris Productions
,
St. Louis, MO
.
16.
Marie
,
S.
,
Chapuliot
,
S.
,
Kayser
,
Y.
,
Lacire
,
M. H.
,
Drubay
,
B.
, and
Barthelet
,
B.
,
2007
, “
French RSE-M and RCC-MR Code Appendixes for Flaw Analysis: Presentation of the Fracture Parameter Calculation—Part I: General Overview
,”
Int. J. Press. Vessels Pip.
,
84
(10–11)
, pp.
590
600
.10.1016/j.ijpvp.2007.05.003
17.
Zahoor
,
A.
,
1989
, “Ductile Fracture Handbook,” Electric Power Research Institute, Palo Alto, CA, EPRI Report No. NP-6301-D.
18.
Ilyushin
,
A. A.
,
1946
, “
The Theory of Small Elastic Plastic Deformations
,”
Prikadnaia Matematicai Mekhanika
,
10
, pp.
347
356
(in Russian).
19.
Det Norske Veritas,
2006
, Offshore Standard–Fracture Control for Pipeline Installation Methods Introducing Cyclic Plastic Strain. Paper No. DNV-RP-F108.
20.
Mostaghel
,
N.
, and
Byrd
,
R. A.
,
2002
, “
Inversion of Ramberg-Osgood Equation and Description of Hysteresis Loops
,”
Int. J. Non Linear Mech.
,
37
(8)
, pp.
1319
1335
.10.1016/S0020-7462(02)00025-2
21.
Parise
,
L. F. S.
, and
Ruggieri
,
C.
,
2011
, “
J and CTOD Estimation Procedure for Circumferentially Cracked Pipes Under Combined Bending and Internal Pressure
,”
ASME 2011 Pressure Vessels and Piping Division Conference
, No. ASME PVP 2011.
22.
American Petroleum Institute,
2000
, API Specification for Line Pipe. API 5L. Washington, DC. Available at: https://law.resource.org/pub/us/cfr/ibr/002/api.5l.2004.pdf
23.
Simulia-Dassault Systèmes,
2011
, Abaqus Analysis User's Manual, Vol. II: Analysis.
24.
Healy
,
B.
,
Gullerud
,
A.
,
Koppenhoefer
,
K.
,
Roy
,
A.
,
RoyChowdhury
,
S.
,
Walters
,
M.
,
Bichon
,
B.
,
Cochran
,
K.
,
Carlyle
,
A.
,
Sobo
,
J.
,
Messner
,
M.
, and
Dodds
,
R.
,
2012
, “WARP3D - Release 17.2: 3-D Dynamic Nonlinear Fracture Analysis of Solids Using Parallel Computers,” Technical Report, University of Illinois at Urbana-Champaign, Champaign, IL, Civil Engineering Studies, Structural Research Series No. 607.
You do not currently have access to this content.