As stated in the sister article that the objective of this study was to explore the low-cycle fatigue and ratcheting failure responses of elbow components through experimental and analytical studies. Low-cycle fatigue and ratcheting damage accumulation in piping components may occur under load reversals induced by earthquakes or thermomechanical operations. Ratcheting damage accumulation can cause failure of components through cracking or plastic buckling. Hence, design by analysis of piping components against ratcheting failure will require simulation of this response with reasonable accuracy. In developing a constitutive model that can simulate ratcheting responses of piping components, a systematic set of elbow experiments involving deformation and strain ratcheting were conducted and reported in the sister article. This article will critically evaluate seven different constitutive models against their elbow response simulation capabilities. The widely used bilinear, multilinear, and Chaboche models in ansys are first evaluated. This is followed by evaluation of the modified Chaboche, Ohno–Wang, modified Ohno–Wang, and Abdel Karim–Ohno models. Results from this simulation study are presented to demonstrate that all the seven models can simulate the elbow force response reasonably. The bilinear and multilinear models can simulate the initial elbow diameter change or strain accumulation, but always simulate shakedown during the subsequent cycles when for some of the cases the experimental trends are ratcheting. Advanced constitutive models like Chaboche, modified Chaboche, Ohno–Wang, modified Ohno–Wang, and Abdel Karim–Ohno can simulate many of the elbow ratcheting responses well, but for some of the strain responses, these models simulate negative ratcheting, which is opposite to the experimental trend. Finally, implications of negative ratcheting simulation are discussed and suggestions are made for improving constitutive models ratcheting response simulation.

References

References
1.
Chen
,
X.
,
Chen
,
X.
,
Yu
,
D.
, and
Gao
,
B.
,
2013
, “
Recent Progresses in Experimental Investigation and Finite Element Analysis of Ratcheting in Pressurized Piping
,”
Int. J. Pressure Vessels Piping
,
101
, pp.
113
142
.10.1016/j.ijpvp.2012.10.008
2.
Tagart
,
S. W.
,
1972
, “
Plastic Fatigue Analysis of Pressure Component
,” Pressure Vessels and Piping: Design and Analysis; A Decade of Progress, Vol. 1—Analysis,
G. J.
Bohm
,
R. L.
Cloud
,
L. C.
Hsu
,
D. H.
Pai
, and
R. F.
Reddy
, eds., ASME, New York.
3.
Stowell
,
E. Z.
,
1950
, “
Stress and Strain Concentration at a Circular Hole in an Infinite Plate
,” Report No. NACA TN-2073.
4.
Coffin
,
L. F.
,
1954
, “
A Study of the Effect of Cyclic Thermal Stresses on a Ductile Metal
,”
ASME Trans.
,
76
(
6
), pp.
931
950
.
5.
Manson
,
S. S.
,
1953
,
Behavior of Materials Under Conditions of Thermal Stress, Heat Transfer Symposium
,
University of Michigan Engineering Research Institute
, pp.
9
75
.
6.
Neuber
,
H.
,
1961
, “
Theory of Stress Concentration for Shear-Strained Prismatical Bodies With Arbitrary Nonlinear Stress-Strain Law
,”
ASME J. Appl. Mech.
,
28
(
4
), pp.
544
550
.10.1115/1.3641780
7.
Langer
,
B. F.
,
1962
, “
Designs of Pressure Vessels for Low-Cycle Fatigue
,”
J. Basic Eng.
,
84
(
3
), pp. 389–402.
8.
Markl
,
A. R. C.
,
1952
, “
Fatigue Tests of Piping Components
,”
Trans. ASME
,
74
(
3
), pp. 287–303.
9.
Edmunds
,
H. G.
, and
Beer
,
F. J.
,
1961
, “
Notes on Incremental Collapse in Pressure Vessels
,”
J. Mech. Eng. Sci.
,
3
(3), pp.
187
199
.10.1243/JMES_JOUR_1961_003_026_02
10.
Nadai
,
A.
,
1950
,
Theory of Flow and Fracture of Solids
,
McGraw Hill
,
New York
, London, p.
236
.
11.
Bree
,
J.
,
1967
, “
Elastic Plastic Behavior of Thin Tubes Subjected to Internal Pressure and Intermittent High Heat Fluxes
,”
J. Strain Anal.
,
2
(
3
), pp.
226
238
.10.1243/03093247V023226
12.
Bree
,
J.
,
1968
, “
Incremental Growth Due to Creep and Plastic Yielding of Thin Tubes Subjected to Internal Pressure and Cyclic Thermal Stresses
,”
J. Strain Anal.
,
3
(
3
), pp.
122
177
.10.1243/03093247V032122
13.
Ueda
,
M.
,
Kano
,
T.
, and
Yoshitoshi
,
A.
,
1984
, “
Thermal Ratcheting Criteria and Behavior of Piping Elbows
,”
Proceedings of the 5th International Conference on Pressure Vessel Technology
,
San Francisco
,
CA
, pp.
16
26
.
14.
Ueda
,
M.
,
Kano
,
T.
, and
Yoshitoshi
,
A.
,
1990
, “
Thermal Ratcheting Criteria and Behavior of Piping Elbows
,”
ASME J. Pressure Vessel Technol.
,
112
(
1
), pp.
71
75
.10.1115/1.2928590
15.
Shaw
,
P. K.
, and
Kyriakides
,
S.
,
1985
, “
Inelastic Analysis of Thin-Walled Tubes Under Cyclic Bending
,”
Int. J. Solids Struct.
,
21
(
11
), pp.
1073
1100
.10.1016/0020-7683(85)90044-7
16.
Kyriakides
,
S.
, and
Shaw
,
P. K.
,
1987
, “
Inelastic Buckling of Tubes Under Cyclic Bending
,”
ASME J. Pressure Vessel Technol.
,
109
(
2
), pp.
169
178
.10.1115/1.3264891
17.
Corona
,
E.
, and
Kyriakides
,
S.
,
1991
, “
An Experimental Investigation of the Degradation and Buckling of Circular Tubes Under Cyclic Bending and External Pressure
,”
Thin Walled Struct.
,
12
(
3
), pp.
229
263
.10.1016/0263-8231(91)90048-N
18.
Carmichael
,
G. D. T.
,
1990
, “
The CEGB Aseismic Piping Research Programme
,”
ASME PVP Conference
, pp.
183
193
.
19.
Beaney
,
E. M.
,
1991
, “
Failure of Elbows Under Seismic Loading, Nuclear Electric
,” Report No. TD/SID/REP/0134.
20.
Acker
,
D.
,
Touboul
,
F.
, and
Autrusson
,
B.
,
1992
, “
Experimental Analysis of Ratcheting in Elbows
,” PVP Design and Analysis of Pressure Vessels, Piping, and Components, ASME PVP, Vol.
235
, pp.
87
91
.
21.
EPRI
,
1992
, “
Piping and Fitting Dynamic Reliability Program
,” Component Test Report, EPRI Contract No. RP 1543-15, Vol. 2.
22.
Kobayashi
,
H.
,
Yokoi
,
R.
, and
Fujiwaka
,
T.
,
1995
, “
Experimental Studies of Ratcheting of Pressurized Elbows, ASME PVP
,”
Vol.
301
, pp.
89
94
.
23.
Majumdar
,
S.
,
1996
, “
Shakedown and Ratcheting Analyses of Fusion Reactor First Wall
,”
Fusion Technol.
,
29
, pp.
353
364
.
24.
Boussaa
,
D.
,
Dang Van
,
K.
,
Labbe
,
P.
, and
Tang
,
H. T.
,
1994
, “
Fatigue-Seismic Ratcheting Interactions in Pressurized Elbows
,”
ASME J. Pressure Vessel Technol.
,
116
(
4
), pp.
396
402
.10.1115/1.2929607
25.
Moreton
,
D. N.
,
Yahiaoui
,
K.
, and
Moffat
,
D. G.
,
1996
, “
Onset of Ratcheting in Pressurized Piping Elbows Subjected to In-Plane Bending Moments
,”
Int. J. Pressure Vessels Piping
,
68
(
1
), pp.
73
79
.10.1016/0308-0161(94)00041-7
26.
Hwang
,
H. L.
, and
Ranganath
,
S.
,
1995
, “
Pipe and Elbow Ratcheting Strain Effects on Predicted Fatigue Failure
,”
ASME PVP, Vol.
312
, pp.
13
26
.
27.
Miller
,
P. R.
,
1959
, “
Thermal Stress Ratchet Mechanism in Pressure Vessels
,”
J. Basic Eng.
,
81
, pp.
190
196
.
28.
Chaboche
,
J. L.
,
1986
, “
Time-Independent Constitutive Theories for Cyclic Plasticity
,”
Int. J. Plast.
,
2
(
2
), pp.
149
188
.10.1016/0749-6419(86)90010-0
29.
Chaboche
,
J. L.
,
1989
, “
Constitutive Equations for Cyclic Plasticity and Cyclic Viscoplasticity
,”
Int. J. Plast.
,
5
(
3
), pp.
247
302
.10.1016/0749-6419(89)90015-6
30.
Krempl
,
E.
,
McMahon
,
J. J.
, and
Yao
,
D.
,
1986
, “
Viscoplasticity Based on Overstress With a Differential Growth Law for the Equilibrium Stress
,”
Mech. Mater.
,
5
(
1
), pp.
35
48
.10.1016/0167-6636(86)90014-1
31.
Benallal
,
A.
, and
Marquis
,
D.
,
1987
, “
Constitutive Equations for Non-Proportional Cyclic Elasto-Viscoplasticity
,”
ASME J. Eng. Mater. Technol.
,
109
(
4
), pp.
326
336
.10.1115/1.3225985
32.
Hassan
,
S.
,
Corona
,
E.
, and
Kyriakides
,
S.
,
1992
, “
Ratcheting in Cyclic Plasticity, Part II: Multiaxial Behavior
,”
Int. J. Plast.
,
8
(
2
), pp.
91
146
.10.1016/0749-6419(92)90040-J
33.
Hassan
,
S.
, and
Kyriakides
,
S.
,
1994
, “
Ratcheting of Cyclically Hardening and Softening Materials, Parts I and II
,”
Int. J. Plast.
,
10
(
2
), pp.
149
212
.10.1016/0749-6419(94)90033-7
34.
Ohno
,
N.
, and
Wang
,
J. D.
,
1993
, “
Kinematic Hardening Rules With Critical State of Dynamic Recovery, Parts I and II
,”
Int. J. Plast.
,
9
(
3
), pp.
375
403
.10.1016/0749-6419(93)90042-O
35.
Delobelle
,
P.
,
Robinet
,
P.
, and
Bocher
,
L.
,
1995
, “
Experimental Study and Phenomenological Modelization of Ratcheting under Uniaxial and Biaxial Loading on an Austenitic Stainless Steel
,”
Int. J. Plast.
,
11
(
4
), pp.
295
330
.10.1016/S0749-6419(95)00001-1
36.
Jiang
,
Y.
, and
Sehitoglu
,
H.
,
1996
, “
Modeling of Cyclic Ratchetting Plasticity, Part I: Development of Constitutive Relations
,”
ASME J. Appl. Mech.
,
63
(
3
), pp.
720
725
.10.1115/1.2823355
37.
Chaboche
,
J. L.
,
2008
, “
A Review of Some Plasticity and Viscoplasticity Constitutive Theories
,”
Int. J. Plast.
,
24
(
10
), pp.
1642
1693
.10.1016/j.ijplas.2008.03.009
38.
Armstrong
,
P. J.
, and
Frederick
,
C. O.
,
1966
, “
A Mathematical Representation of the Multiaxial Bauchinger Effect
,” CEGB Report No. RD/BN 731.
39.
Chaboche
,
J. L.
,
Dang-Van
,
K.
, and
Cordier
,
G.
,
1979
, “
Modelization of the Strain Memory Effect on the Cyclic Hardening of 316 Stainless Steel
,”
Proceedings of the 5th International Conference on SMiRT
,
Div. L
,
Berlin, Germany
, L11/3.
40.
Abdel-Karim
,
M.
, and
Ohno
,
N.
,
2000
, “
Kinematic Hardening Model Suitable for Ratchetting With Steady-State
,”
Int. J. Plast.
,
16
(
3–4
), pp.
225
240
.10.1016/S0749-6419(99)00052-2
41.
Bari
,
S.
, and
Hassan
,
T.
,
2002
, “
An Advancement in Cyclic Plasticity Modeling for Multiaxial Ratcheting Simulation
,”
Int. J. Plast.
,
18
(
7
), pp.
873
894
.10.1016/S0749-6419(01)00012-2
42.
Kang
,
G.
,
Gao
,
Q.
, and
Yang
,
X.
,
2004
, “
Uniaxial and Non-Proportionally Multiaxial Ratcheting of SS304 Stainless Steel at Room Temperature: Experiments and Simulations
,”
Int. J. Nonlinear Mech.
,
39
(
5
), pp.
843
857
.10.1016/S0020-7462(03)00060-X
43.
Hassan
,
T.
,
Taleb
,
L.
, and
Krishna
,
S.
,
2008
, “
Influence of Non-Proportional Loading on Ratcheting Responses and Simulations by Two Recent Cyclic Plasticity Models
,”
Int. J. Plast.
,
24
(
10
), pp.
1863
1889
.10.1016/j.ijplas.2008.04.008
44.
Krishna
,
S.
,
Hassan
,
T.
,
Naceur
, I
. B.
,
Sai
,
K.
, and
Cailletaud
,
G.
,
2009
, “
Macro Versus Micro Scale Cyclic Plasticity Models in Simulating Nonproportional Cyclic and Ratcheting Responses of Stainless Steel 304
,”
Int. J. Plast.
,
25
(
10
), pp.
1910
1949
.10.1016/j.ijplas.2008.12.009
45.
Garud
,
Y. S.
,
Durlofsky
,
H.
, and
Tagart
,
S. W.
,
1993
, “
Analysis and Prediction of Ratcheting-Fatigue: Comparison With Tests and Code Rules
,”
ASME PVP, Vol.
266
, pp.
23
32
.
46.
Yamamoto
,
Y.
,
Yamashita
,
N.
, and
Tanaka
,
M.
,
2002
, “
Evaluation of Thermal Stress Ratchet in Plastic FEA
,”
ASME PVP, Vol.
439
, pp.
3
10
.
47.
Balan
,
C.
, and
Redektop
,
D.
,
2005
, “
The Effect of Bi-Directional Loading on Fatigue Assessment of Pressurized Piping Elbows With Local Thinned Areas
,”
Int. J. Pressure Vessels Piping
,
82
(3), pp.
235
242
.10.1016/j.ijpvp.2004.07.020
48.
Abdalla
,
H. F.
,
Megahed
,
M. M.
, and
Younan
,
M. Y. A.
,
2006
, “
Determination of Shakedown Limit Load for a 90-Degree Pipe Bend Using a Simplified Technique
,”
ASME J. Pressure Vessel Technol.
,
128
(
4
), pp.
618
624
.10.1115/1.2349575
49.
Abdalla
,
H. F.
,
Megahed
,
M. M.
, and
Younan
,
M. Y. A.
,
2009
, “
Comparison of Pipe Bend Ratcheting/Shakedown Test Results With the Elastic Shakedown Boundary Determined Via a Simplified Technique
,”
ASME
PVP Paper No. 7740310.1115/PVP2009-77403.
50.
Oh
,
C.-S.
,
Kim
,
Y.-J.
, and
Park
,
C.-Y.
,
2008
, “
Shakedown Limit Loads for Elbows Under Internal Pressure and Cylic In-Plane Bending
,”
Int. J. Pressure Vessels Piping
,
85
(
6
), pp.
394
405
.10.1016/j.ijpvp.2007.11.009
51.
Vlaicu
,
D.
,
2010
, “
Shakedown Analysis of Nuclear Components Using Linear and Nonlinear Methods
,”
ASME J. Pressure Vessel Technol.
,
132
(
2
), p.
021203
.10.1115/1.4000505
52.
Chen
,
H.
,
Ure
,
J.
,
Li
,
T.
,
Chen
,
W.
, and
Mackenzie
,
D.
,
2011
, “
Shakedown and Limit Analysis of 90o Pipe Bends Under Internal Pressure, Cyclic In-Plane Bending and Cyclic Thermal Loading
,”
Int. J. Pressure Vessels Piping
,
88
(
5–7
), pp.
213
222
.10.1016/j.ijpvp.2011.05.003
53.
Chen
,
H.
,
Chen
,
W.
,
Li
,
T.
, and
Ure
,
J.
,
2012
, “
On Shakedown, Ratchet and Limit Analyses of Defective Pipeline
,”
ASME J. Pressure Vessel Technol.
,
134
(
1
), p.
011202
.10.1115/1.4004801
54.
Hassan
,
T.
,
Zhu
,
Y.
, and
Matzen
,
V. C.
,
1998
, “
Improved Ratcheting Analysis of Piping Components
,”
Int. J. Pressure Vessels Piping
,
75
(
8
), pp.
643
652
.10.1016/S0308-0161(98)00070-2
55.
Rahman
,
S. M.
,
Hassan
,
T.
, and
Corona
,
E.
,
2008
, “
Evaluation of Cyclic Plasticity Models in Ratcheting Simulation of Straight Pipes Under Cyclic Bending and Steady Internal Pressure
,”
Int. J. Plast.
,
24
(
10
), pp.
1756
1791
.10.1016/j.ijplas.2008.02.010
56.
Zakavi
,
S. J.
,
Zehsaz
,
M.
, and
Eslami
,
M. R.
,
2010
, “
The Ratchetting Behavior of Pressurized Plain Pipework Subjected to Cyclic Bending Moment With the Combined Hardening Model
,”
Nucl. Eng. Des.
,
240
(
4
), pp.
726
737
.10.1016/j.nucengdes.2009.12.012
57.
Suzuki
,
K.
,
Nsmits
,
Y.
,
Abe
,
H.
,
Ichihashi
,
I.
,
Suzuki
,
K.
,
Ishiwata
,
M.
,
Fujiwaka
,
T.
, and
Yokota
,
H.
,
2002
, “
Seismic Proving Test of Ultimate Piping Strength, ICONE-10
,” Paper No. 22225.
58.
Fujiwaka
,
T.
,
Kobayashi
,
H.
,
Asada
,
Y.
, and
Shitara
,
C.
,
2002
, “
Simulation of Excessive Deformation of Piping Due to Seismic and Weight Loads
,”
ASME PVP, Vol.
439
, pp.
345
352
.
59.
DeGrassi
,
G.
,
Hofmayer
,
C.
,
Murphy
,
A.
,
Suzuki
,
K.
, and
Namita
,
Y.
,
2003
, “BNL Nonlinear Pre-Test Seismic Analysis for the NUPEC Ultimate Strength Piping Test Program,” Transactions of the 17th International Conference on SMiRT, Prague, Czech Republic, Aug. 17–22, Paper K25.
60.
Rahman
,
M.
, and
Hassan
,
T.
,
2005
, “
Advanced Plasticity Models in Simulating Ratcheting Responses of Straight and Elbow Piping Components, and Notched Plates
,”
ASME
Paper No. PVP2005-71635. 10.1115/PVP2005-71635
61.
Chen
,
X.
,
Gao
,
B.
, and
Chen
,
G.
,
2006
, “
Ratcheting Study of Pressurized Elbows Subjected to Reversed In-Plane Bending
,”
ASME J. Pressure Vessel Technol.
,
128
(
4
), pp.
525
532
.10.1115/1.2349562
62.
Shi
,
H.
,
Chen
,
G.
,
Wang
,
Y.
, and
Chen
,
X.
,
2013
, “
Ratcheting Behavior of Pressurized Elbow Pipe With Local Wall Thinning
,”
Int. J. Pressure Vessels Piping
,
102–103
, pp.
14
23
.10.1016/j.ijpvp.2012.12.002
63.
Chen
,
X.
,
Jiao
,
R.
, and
Kim
,
K. S.
,
2005
, “
On the Ohno-Wang Kinematic Hardening Rules for Multiaxial Ratcheting Modeling of Medium Carbon Steel
,”
Int. J. Plast.
,
21
(
1
), pp.
161
184
.10.1016/j.ijplas.2004.05.005
64.
Valeris
,
G. E.
,
Karamanos
,
S. A.
, and
Gresnigt
,
A. M.
,
2013
, “
Pipe Elbows Under Strong Cyclic Loading
,”
ASME J. Pressure Vessel Technol.
,
135
(1), p.
011207
.10.1115/1.4007293
65.
Valeris
,
G. E.
, and
Karamanos
,
S. A.
,
2014
, “
Low-Cycle Fatigue of Pressurized Steel Elbows Under In-Plane Bending
,”
ASME J. Pressure Vessel Technol.
137
(1), p. 011401.10.1115/1.4027316
66.
Tseng
,
N. T.
, and
Lee
,
G. C.
,
1983
, “
Simple Plasticity Model of the Two-Surface Type
,”
ASCE J. Eng. Mech.
,
109
(
3
), pp.
795
810
.10.1061/(ASCE)0733-9399(1983)109:3(795)
67.
Hassan
,
T.
,
Rahman
,
M.
, and
Bari
,
S.
,
2014
, “
Low-Cycle Fatigue and Ratcheting Responses of Elbow Piping Components
,”
ASME J. Pressure Vessel Technol.
(submitted).10.1115/1.4029068
68.
Prager
,
W.
,
1956
, “
A New Method of Analyzing Stresses and Strains in Work Hardening Plastic Solids
,”
ASME J. Appl. Mech.
,
23
, pp.
493
496
.
69.
Besseling
,
J. F.
,
1958
, “
A Theory of Elastic, Plastic and Creep Deformations of an Initially Isotropic Material
,”
ASME J. Appl. Mech.
,
25
, pp.
529
536
.
70.
Chen
,
X.
, and
Jiao
,
R.
,
2004
, “
Modified Kinematic Hardening Rule for Multiaxial Ratcheting Prediction
,”
Int. J. Plast.
,
20
(
4–5
), pp.
871
898
.10.1016/j.ijplas.2003.05.005
71.
Gau
,
J.-S.
,
1990
, “
Elastic–Plastic Behavior of Pressurized Pipe
,” Ph.D. dissertation,
University of Akron
, Akron,
OH
.
72.
Bari
,
S.
, and
Hassan
,
T.
,
2000
, “
Anatomy of Coupled Constitutive Models for Ratcheting Simulation
,”
Int. J. Plast.
,
16
(
3–4
), pp.
381
409
.10.1016/S0749-6419(99)00059-5
73.
Corona
,
E.
,
Hassan
,
T.
, and
Kyriakides
,
S.
,
1996
, “
On the Performance of Kinematic Hardening Rules in Predicting a Class of Biaxial Ratcheting Histories
,”
Int. J. Plast.
,
12
(
1
), pp.
117
145
.10.1016/S0749-6419(95)00047-X
74.
Feigenbaum
,
H. P.
,
Dugdale
,
J.
,
Dafalias
,
Y. F.
,
Kourousis
,
K. I.
, and
Plesek
,
J.
,
2012
, “
Multiaxial Ratcheting With Advanced Kinematic and Directional Hardening Rules
,”
Int. J. Solids Struct.
,
49
(
22
), pp.
3063
3076
.10.1016/j.ijsolstr.2012.06.006
You do not currently have access to this content.